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—— Abstract

It has often been claimed in recent papers that one can find a degree d Sum-of-Squares proof if
one exists via the Ellipsoid algorithm. In [16], Ryan O’Donnell notes this widely quoted claim is
not necessarily true. He presents an example of a polynomial system with bounded coefficients
that admits low-degree proofs of non-negativity, but these proofs necessarily involve numbers
with an exponential number of bits, causing the Ellipsoid algorithm to take exponential time. In
this paper we obtain both positive and negative results on the bit complexity of SoS proofs.

First, we propose a sufficient condition on a polynomial system that implies a bound on
the coefficients in an SoS proof. We demonstrate that this sufficient condition is applicable
for common use-cases of the SoS algorithm, such as MAX-CSP, BALANCED SEPARATOR, MAX-
CLIQUE, MAX-BISECTION, and UNIT-VECTOR constraints.

On the negative side, O’Donnell asked whether every polynomial system containing Boolean
constraints admits proofs of polynomial bit complexity. We answer this question in the negative,
giving a counterexample system and non-negative polynomial which has degree two SoS proofs,
but no SoS proof with small coefficients until degree Q(y/n).
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1 Introduction

The Sum of squares (SoS) proof system is a versatile and powerful approach to certifying
polynomial inequalities. SoS certificates can be shown to underlie a vast number of algorithms
in combinatorial optimization. On the one hand, SoS certificates hold the promise of yielding
algorithms that possibly refute the notorious unique games conjecture [3, 2, 10]. On the other
hand, a flurry of recent works have applied SoS proofs to develop algorithms for problems
ranging from constraint satisfaction problems to tensor problems.

To illustrate sum of squares certificates, let us consider the example of the BALANCED
SEPARATOR problem. Here we are given a graph G = (V, E) and the goal is to find a
balanced cut (S, S) with the minimum number of crossing edges. Like many problems in
combinatorial optimization, it can be reformulated as a low-degree polynomial optimization
problem. Specifically if we associate {0, 1} variables {x1,...,x,} for the vertices of the graph
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G then we can rewrite the BALANCED SEPARATOR problem as follows:

o 2 . 2 _ o P o 2n
Minimize (%E(ch — ;) subject to {xl =x;Vi, 3 < Zmz < 3 } .
0,3 ¢

Here the constraint 27 = z; ensures z; € {0, 1} while the inequalities enforce the condition
that the cut is balanced. More generally, a low-degree polynomial optimization is of the
form:

Minimize r(z) subject to

equalities P = {p;(z) = 0|i € [n]} and inequalities Q = {g;(z) > 0]i € [m]} .

An SoS certificate of a lower bound r(x) > 6 is given by a polynomial identity of the form

r(z)—6= Z hi(z)? + Z ZS?(Q?) -qi(x) + Z Ai(z)pi(z) .
% i€[m] J i€[n]

Notice that for all z satisfying the equalities P and the inequalities Q, the right hand
side of the above identity is manifestly non-negative, thereby certifying that r(z) > 6.
The degree of the SoS certificate is the maximum degree of the polynomials involved, i.e.,
d = max{deg h7, deg s3q;, deg Aip; }.

The main appeal of SoS certificates for polynomial optimization is that the existence of a
degree d SoS certificate can be formulated as the feasibility of a semidefinite program (SDP).
This is the degree d SoS relaxation first introduced by Shor [18], and expanded upon by later
works of Nesterov [15], Grigoriev and Vorobjov [9], Lasserre [12, 11] and Parrilo [17]. (see,
e.g., [13, 4] for many more details).

The degree d SoS SDP has n°(® variables, and if the coefficients of p and ¢ are reasonably
bounded (smaller than Q"O(d)), the resulting SDP has a compact description of size n®(®.
From this, several works including those by the authors, asserted that the resulting feasibility
SDP can be solved in time n°(@ using the Ellipsoid algorithm.

In a recent work, O’Donnell [16] observed that this often repeated claim is far from true.
Specifically, O’Donnell exhibited systems of polynomial inequalities with bounded coeflicients
such that only degree 2 SoS certificates of non-negativity involve coefficients that are doubly
exponential in size. Thus all SoS certificates need an exponential number of bits to represent
and consequently, the ellipsoid algorithm will incur an exponential running time.

As pointed out by O’Donnell, the issue at hand here is not just that of additive error
in the solution, i.e., the difference between testing feasibility and near-feasibility. Indeed,
semidefinite programming via the ellipsoid algorithm can only test feasibility up to a very small
additive error. However, in a majority of applications of SoS SDP relaxations in combinatorial
optimization, the variables in the underlying polynomial system are explicitly bounded (also
known as Archimedian). Specifically, these include constraints such as {z? < 1|i < [n]},
which yield explicit bounds on the values of the variables. In these settings, if there is
an approximate SoS certificate for r(x) > 6, then there exists a proper SoS certificate
for a slightly weaker lower bound r(z) > 6 — o(1). Therefore, additive error incurred in
semidefinite programming can often be traded off for a slightly weaker objective value. The
issue highlighted by O’Donnell is far more serious in that the coefficients of the SoS certificate
are too large — thereby directly affecting the runtime of the ellipsoid algorithm.

On a positive note, O’Donnell shows that a polynomial system whose only constraints
are the Boolean constraints {z? = x;|i € [n]} always admit SoS certificates with polynomial
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bit complexity. He proceeds to ask whether all polynomial systems that include Boolean
constraints, potentially among others, always admit bounded SoS certificates.

1.1 Our Results

In this work, we further explore the issue of bit complexity of SoS proofs, and obtain both
positive and negative results.

First, we present an easily verifiable and broadly applicable set of sufficient conditions
under which a polynomial optimization problem has small SoS certificates. Roughly speaking,
we show that polynomial systems with rich sets of solutions have bounded SoS certificates of

non-negativity. Consider a system consisting of polynomial equalities P and inequalities Q.

Our approach consists of looking for assignments S satisfying three criteria (see Definition 5
and Theorem 10 for formal statements).

» Theorem 1. Assume (P, Q,S) satisfies:

1. The assignments S robustly satisfy the inequalities in Q.

2. The polynomial calculus (also called Nullstellensatz) proof system is both complete and
efficient over S. In other words, all degree d polynomial identities over S can be derived
using a degree O(d) polynomial derivation from the equalities P.

3. The assignments S are spectrally rich in that smallest non-zero eigenvalue of their
covariance matriz is at least 2~ POV,

Then if r has a degree d proof of non-negativity from P and Q, it also has a degree O(d)

proof of non-negativity with coefficients bounded by gpoly(n®)

We demonstrate the broad applicability of the above set of sufficient conditions by using
them to show upper bounds on bit complexity for MAX-CSP, MAX-CLIQUE, MATCHING,
BALANCED SEPARATOR, MAX-BISECTION, and optimization over the unit sphere. In each
case, the above sufficient conditions can be verified easily.

The above set of sufficient conditions are widely applicable in combinatorial optimization,

wherein the polynomial system is typically a relaxation of a well-known set of integer solutions.

In such a setup with integer solutions, we observe in Section 3 that spectral richness is an
immediate consequence of the discrete nature of the set of solutions. Therefore, in all these
setups, the only non-trivial thing to verify is the efficiency of the polynomial calculus proof
system.

The work of O’Donnell [16] exhibited a polynomial system with bounded coefficients which

admitted degree 2 SoS certificate, whose coefficients were necessarily doubly-exponential.

However, the variables in this polynomial system were not all Boolean, i.e. did not have the
x? = x; constraint. In fact, O’'Donnell asked whether every polynomial system with Boolean
constraints admits a small SoS proof. Moreover, the polynomial system in [16] admits a
degree 4 SoS certificate with small bit complexity. This opens up the possibility that one
can effectively reduce the bit-complexity by raising the degree of the proof. For instance, if a
system admits a degree d SoS certificate then does it always admit a degree 2¢ SoS certificate
with small bit complexity (even under Boolean constraints)? Unfortunately, we refute both
of the above possibilities by exhibiting a counterexample. Formally, we show the following:

» Theorem 2. There exists a system of quadratic equations on n variables such that
The system includes the equation x? — x; = 0 for each i € [n].
There exists a polynomial with a degree 2 SoS certificate of non-negativity, albeit with
doubly exponentially large coefficients.

No SoS certificate of degree d < \/n has coefficients smaller than € (—d . QEXP(\/E)).

1
n
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2 Preliminaries

For a set of real polynomials P = {p1,pa,...,pm}, we denote their generated ideal in R[z]
by (P) or (p1,...,pm). We will be working with systems of polynomial constraints, and we
will use the P to denote the equality constraints, and Q to denote the inequality constraints,
i.e. p(x) =0 and g(z) > 0 for p € P and ¢ € Q. We will usually use S for the set of points
satisfying these constraints. We use R[z]; for the set of polynomials of degree at most d,
and Si for the cone of positive semidefinite d X d matrices. We write v, for the vector of
polynomials whose entries are the elements of the usual monomial basis of R[z]q. Similarly,
we use v(a)g for the vector of reals whose entries are the entries of v4 evaluated at o. We
usually omit the dependencies on d as it is clear from context.

2.1 Polynomial Proofs

Let P ={p1,...,pn} be a set of polynomials, and let S = {x € R"|Vp € P : p(z) = 0}. We
define a proof of membership in (P) as follows:

» Definition 3. We say that r(x) has a derivation from P if there is a polynomial identity
of the form

r(z) = Z Ai(Z)pi ().

We say that the proof has degree d if max;{deg \ip;} = d.

A set of polynomials forming a derivation is called a Polynomial Calculus (PC) or
Nullstellensatz proof. The above proof system is useful for proving when polynomials are zero
on S, but often we want to prove that they are positive. To that end, let P = {p1,...,pn}
and Q = {q1,...,¢n} be two sets of polynomials, and let S = {x € R"|Vp € P : p(z) =
0,Vq € Q: q(x) > 0}. We define a proof of non-negativity as follows:

» Definition 4. We say that r(z) has a Sum-of-Squares proof of non-negativity from P and
Q if there is a polynomial identity of the form

o) = 3@ + 3 (Y20 | ae) + Yo Ao

We say the proof has degree d if max{degh?, deg s?qi, deg \;p} = d.

The idea behind this terminology is that if such a proof exists, then r must be non-negative
on S since the first two terms are non-negative, and the last term is zero. We will be
concerned with not just the degree of these proofs, but also their bit complexity. To this
end, we define the following norms on polynomials and proofs: For p(z) € R[z], we write ||p||
for the maximum absolute value of coefficients of p in the standard monomial basis, and for
any collection of polynomials P, we write ||P|| = max,ep ||p||. For a vector o € R™, we also
write ||| for the maximum absolute value of entries of «, and we write ||.S|| = maxaes |||
These norms are usually called infinity norms and denoted || - | in other works, but since
we do not use other norms in this work we will omit the subscript. Throughout this paper
we will assume that the solutions « are explicitly bounded by ||c|| < 2P°WY (n?),



P. Raghavendra and B. Weitz

2.2 Rich Solution Spaces

In this section we define the conditions we require in order to guarantee that SoS proofs from
P and Q have low bit-complexity. For a polynomial system (P, Q) and a set S C {x | Vp €
P : p(z) = 0}, define the moment matrix as

Ms 4 = Eqes[v(a)av(a)g],

where the expectation is over the uniform distribution over S. We will omit the subscripts
and write M, if S and d are clear from the context.

» Definition 5. With the above definitions,
We say that S is d-spectrally rich for (P, Q) up to degree d if every nonzero eigenvalue of
Mg 4 is at least 4.
We say that (P, Q) is k-complete on S up to degree d if every zero eigenvector ¢ of Mg 4
(which can be seen as a degree d polynomial ¢’'v,) has a degree k derivation from P.
We say that S is e-robust for Q if Vg € Q,Va € S : g(a) > e.
Spectral richness of the solutions S is equivalent to requiring if p(z) is small on S, then
there is a polynomial ¢ which agrees with p on S and that has small coefficients. If (P, 9, S)
satisfies all three conditions then we say that S is (0, k, €)-rich for (P, Q) up to degree d. If
1/6 = gpoly(n®)  f — O(d), and 1/e = 2poly(n) we simply say S is rich for (P, Q) or simply
rich. We choose these bounds because Theorem 10 will imply that any constraints with a
rich solution space has proofs of non-negativity that can be taken to have polynomial bit
complexity.

» Remark. There is nothing special about the uniform distribution on S for these definitions.

In fact, our results hold if there is any distribution over a set S C {x | Vp € P : p(z) = 0}
with the above properties. In this work we consider mostly combinatorial problems where S
is finite, and the uniform distribution is sufficient for all of our examples, so we restrict to
this case for simplicity.

Before we get into the proof of the main theorem, we exhibit polynomial systems that
admit rich solutions.

3 Examples with Rich Solution Spaces

In this section we present examples of polynomial systems that admit rich solution spaces.

First, we consider the case S C {0,1}". In this case, the spectral richness is a consequence
of the following easy observation.

» Lemma 6. Let M € SY be an integer matriz with |M;;| < B for all i,j € [N]. The
smallest non-zero eigenvalue of M is at least (BN)~™™.

Proof. Let A be a full-rank principal minor of M (which must exist because M is PSD and
has a Cholesky decomposition), and for convenience let it be at the upper-left block of M (by
permuting rows and columns if necessary). We claim the least eigenvalue of A lower bounds
the least nonzero eigenvalue of M. Since M is symmetric, there must be a C' such that

I

o] !

]A[I cr .

Let P = [I,CT], p be the least eigenvalue of A, and z be a unit vector perpendicular to the
zero eigenspace of M. Then we have 7 Mz = (Pz)T A(Pz) > px” PT Px. Now PT P has
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the same nonzero eigenvalues as PPT = I + CTC > I, and the zero eigenspace of PTP is
the same as the zero eigenspace of M. Because x is perpendicular to the zero eigenspace,
2T PTPx > 1, and so every nonzero eigenvalue of M is at least p. Now A is a full-rank
bounded integer matrix with dimension at most N. The magnitude of its determinant is at
least 1 and all eigenvalues are at most IV - B. Therefore, its least eigenvalue must be at least
(BN)~" in magnitude. |

» Lemma 7. Let P and Q be such that S C {0,1}"™. Then S is 0-spectrally rich with
1 _ 9poly(n?)_
5

Proof. Recall M = E,cs[v(a)v(a)?], and note that |S| - M is an integer O(n¢) x O(n?)
matrix with entries at most 2. The proof follows by applying Lemma 6. |

To prove completeness, we typically want to show two things. First, that every degree d
polynomial in (P) has a degree at most k derivation. Second, that there are no polynomials
outside (P) that are zero on S. This second condition can be thought of as saying that the
set of equations P is somehow maximal, i.e., if there are extra polynomial equalities implied
by Q, they should be included in P. Here we consider a few examples.

Max-CSP: P = {z? — z;|i € [n]}

Here S = {0,1}". Any polynomial p of degree d can be multilinearized one monomial at a
time. Specifically, we can find degree d multilinear p* such that p — p* = 0 has a degree d
derivation from P. Furthermore, the multilinear polynomial p* is zero over S if and only if
all its coeflicients are zero. Thus P is d-complete up to degree d for all d € N.

Max-Clique: P = {x? — z;|t € [n]} U {ziz;|(:,j) ¢ E}

Here S is the set of all cliques in the graph. Suppose p is a polynomial that is identically
zero over S. Without loss of generality, we may assume p is multilinear, if otherwise we can
multilinearize it using {z? — 2;|i € [n]}. For a multilinear polynomial p(z) = acn] Pata
we claim that if p(z) = OVz € S then for all cliques a C [n], the corresponding coefficient
Do = 0, i.e., all non-zero coefficients of p are non-cliques. Suppose not, then let o be the
smallest clique with p, # 0. Then, we will have p(I,) = po # 0, a contradiction. Since all
coefficients of p are non-cliques, each monomial in p can be eliminated using an appropriate
polynomial from {z;z;|(i,7) ¢ E}.

» Remark. More generally, the above two cases are special cases of the following general
setup: Q is empty, and P is a Grobner basis. A Grobner basis for an ideal is a generating set
of polynomials that allow a well-defined multivariate polynomial division (see [1] for more
information). Computing the Grobner basis is often the first step in practical polynomial
equation solvers, and we note the following easy lemma:

» Lemma 8. If Q =0 and P is a Grébner basis for (P), then S is d-complete up to degree d.

Proof. If P is a Grobner basis, then every degree d polynomial in (P) has a degree d
derivation via multivariate division. Because Q = ), the polynomials that are zero on S are
exactly the polynomials in (P). <
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Balanced Separator: P = {z? — z;|t € [n]}, @ ={2n/3 — 3, x;, >, x; — n/3}

The solution space S here is all bit strings with hamming weight between n/3 and 2n/3.

Suppose r is a polynomial that is zero on S. Without loss of generality, we may assume that
r is multilinear by using the constraints {27 — x;|i € [n]}. Suppose r is a non-zero multilinear
polynomial which is zero on S, then its symmetrized version r* = % Y ses, O must also
be zero on S, where ¢ acts by permuting the variable names. However, r* is a univariate
polynomial in ), z; (modulo the Boolean constraints). This univariate polynomial has n/3
zeros, and thus must have degree at least n/3. Since symmetrizing does not change degree,
we conclude that r also has degree at least n/3. Thus every non-zero multilinear polynomial
that is zero on S but not in (P), has degree at least n/3. Therefore the system is d-complete
up to degree d for d < %. The polynomials in @ can be perturbed by 1/2 to make them
1/2-robust, and thus S is rich for (P, Q).

Matching: P = {x% —xiilt, 7 € P} UL,z — 1) € [n]} U {@ijzili, j, k € [n]}

These constraints are 2d-complete as proven in [5].

Max-Bisection: P = {? — z;|i € [n]} U {>; z; — n/2}

We will prove in Section 6 that these constraints are d-complete. The proof will be very
similar to the one for MATCHING, due to the similar symmetry of the constraints.
Unit-Vector: P = {}_, ? — 1}

Here S = {z : ||z|| = 1}. This constraint appears frequently in tensor norm problems as a
way to enforce scaling. Since Q = (), it is clearly robust. It may be well-known that P is
d-complete, but we could not find a reference so we record it here for completeness. Let p(z)

be any degree d polynomial which is zero on the unit sphere, and define po(x) = p(z) + p(—z).

Clearly py is also zero on the unit sphere, with degree k = 2| (d+1)/2]. Note that py has only
terms of even degree. Define a sequence of polynomials {p; }icfo,...,x} as follows. Define ¢; to

be the part of p; which has degree strictly less than k, and let p;41 = p; +¢; - (3, 27 — 1).
Then each p; is zero on the unit sphere and has no monomials of degree strictly less than 2.

Thus py, /2 is homogeneous of degree k. But then p(tr) = tFpr(x) = 0 for any unit vector x
and t > 0, and thus pg(«) must be the zero polynomial. This implies that pg is a multiple of
>, 27 — 1. The same logic shows that p(z) — p(—z) is also a multiple of Y, 2 — 1, and thus
so is p(x). Now (P) is principal, so every degree d polynomial in it has a degree d derivation,
so (P, Q,95) is d-complete.

To prove spectral-richness, we note that in [7] the author gives an exact formula for
each entry of the matrix M = | g P(w) for any polynomial p. The formulas imply that
(n +d)!m=™/2M is an integer matrix with entries (very loosely) bounded by (n + d)!d!2". By
Lemma 6, we conclude that S is d-spectrally rich with 1/§ = gpoly(n®),

We collect the examples discussed in this section here:

» Corollary 9. The following constraints admit rich solutions:
MAX-CSP: P = {z? — z;|i € [n]}.
MAX-CLIQUE: P = {a? — z;|i € [n]} U{z;z;|(i,j) ¢ E}.
BALANCED SEPARATOR: P = {27 —z;li € [n]}, Q={2n/3 =Y, z;, >, x; — n/3}.
MATCHING: P = {z}; — x45li,j € [n]} U{X; ij — 1]i € [n]} U{zijzirli, j, k € [n]}.
MAX-BISECTION: P = {z? — z;]i € [n]} U{>, z; — n/2}.
UNIT-VECTOR: P = {}>, 27 — 1}.
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3.1 Limitations

While Theorem 10 allows us to prove that many different systems of polynomial constraints
have well-behaved SoS proofs, there are a few areas where it comes up short. Most noticeably,
to contain a rich set of solutions the solution space has to be nonempty. This can be a
problem when trying to find SoS proofs of infeasibility. For example, one common technique
is to introduce lower bounds on an objective function f(z) of a maximization problem as
constraints and attempt to use SoS to find a refutation, i.e. a proof of non-negativity for
the constant polynomial —1. We are unable to show that these proofs can be taken to have
polynomial bit complexity since they have empty solution spaces. As another example, we
are unable to use our framework to show that refutations of the knapsack constraints use only
polynomially many bits, even though it is clear by simply examining these known refutations
that they only involve small coefficients.

4 Rich Solution Spaces Yield Bounded SoS Proofs

In this section we prove our main theorem:

» Theorem 10. Let P = {p1,...,pm} and Q = {q1,...,q¢} be sets of polynomials with
S C{aeR"VpeP:pla)=0}. Assume that the set S is (k,0,€)-rich for (P, Q).

Let r(x) be a polynomial non-negative on S, and assume r has a degree d sum-of-squares
proof of non-negativity

i=1

=1 \j=1

Then r has a degree k sum-of-squares proof of non-negativity such that the coefficients of
every polynomial appearing in the proof are bounded by gpoly(n®.log 3.log 1) I, particular, if S
is rich then every coefficient can be written down with only poly(n?) bits.

Proof. First, we rewrite the proof into a more convenient form before proving bounds on
each individual term. Because the elements of v are a basis for R[z]4, every polynomial in

the proof can be expressed as ¢!'v, where c is a vector of reals:

r(z) = ZC;‘FV +Z ZdT )? Qi"‘z)\ipi
i=1 j= i=1

~

CVV +Z D;,vvT %+Z)\zpz~
=1

for PSD matrices C, Dy,...,Dy. Next, we average this polynomial identity over all the
points a € S:

E [r(a)] = (C, E [v( +ZD”1qu (a)v(a)v(a)"]) +0.

a€esS aesS

The LHS is at most poly(||r|],||S]]), and the RHS is a sum of positive numbers, so the LHS is
a bound on each term of the RHS. We would like to say that since S is d-spectrally rich, the
first term is at least 6 Tr(C'). Unfortunately the averaged matrix may have zero eigenvectors,
and it is possible that C' could have very large eigenvalues in these directions. However
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these eigenvectors must correspond to polynomials that are zero on S. Because (P, Q, S) is
complete, these can be absorbed into the final term. More formally, let II =" wu” be the

projector onto the zero eigenspace of M = E,ecs[v(a)v(a)?]. Because (P, Q,S) is complete,
T T

for each u we have a degree k derivation u’v = 3", oyp;. Then IIvv? = Y (uTv)uv™.

Thus we can write

(C,vwThy = (C, (T + T+) v (IT + TTH))
= (O, TTtwwTTIt) + Z uv ((C, T vu” + vu I + vu”1I))

= {tcnt, vy + Z oiD;-

Doing the same for the other terms and setting C’ = [I-CTI* and similarly for D!, we get a
new proof:

0 m
r(@) = (¢, wh) + S DL g+ 3 Aipi.
=1

i=1
Now after averaging over S, the zero eigenspaces of C’ and each D) are contained in the zero
eigenspace of M. Furthermore, e-robustness implies, for each 1,

(D}, E [v(a)v(e)"gi(e)]) > (D}, E [v(a)v(a)T]).

Taken with the d-spectral richness, we have

14
poly (|||, I1S]) = 6 Te(C") + Y ed Te(D).
=1

The Frobenius norm of any PSD matrix is bounded by its trace, so we conclude that C” and
each D} have entries bounded by poly(||rl, [|S]], §, 2).

The only thing left to do is to bound the coefficients A}, but this is easy because the SoS
proof is linear in these coefficients. If we imagine the coefficients of the A} as variables, then

the linear system induced by the polynomial identity

L m
r(z) — (C",vvT) — Z<D£,VVT> = Z \ipi

i=1 i=1
is clearly feasible, and the coefficients of the LHS are bounded by poly(|||, [|S||, 3, 1). There
are O(n*) variables, so by Cramer’s rule, the coefficients of the A} can be taken to be bounded
by poly(||77||”k7 r N [ o e ] 2poly(n”) a5 they are considered part of the
input, [|S]| < 2p°¥() by the explicitly bounded assumption, and d < k. Thus, this bound is
at most 2pely(n".log 3.log ) <

5 Boolean Systems With No Small-Coefficient Proofs

In [16], the author gives an example of a polynomial system for which degree two SoS
proofs can certify non-negativity of a certain polynomial, but the proofs necessarily involves
coefficients of doubly-exponential size. However, there are two weaknesses in his example
system. First, it is not a Boolean one, i.e. it contains variables y; for which the constraint
y? — y; = 0 is not present in the constraints. Many practical optimization problems have
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Boolean constraints, and in [16], the author hoped that having those constraints might suffice
to imply that all proofs could have small bit complexity. Second, while the degree two proofs
must have exponential bit complexity, there were degree four proofs of non-negativity with
polynomial bit complexity. In this section, we strengthen his counterexample, giving an
example of a Boolean system with n variables for which there is a polynomial that has a
degree two proof of non-negativity, but no proof with polynomial bit complexity until degree

Q).

5.1 A First Example

The original example given in [16] essentially contains the following system whose repeated
squaring is responsible for the blowup of the coefficients in the proofs:

Yi—y2=0, yv5—y3=0, ..., yi1—yYa=0, yi=0.

Clearly, the only solution to the system is (0,0,0,...,0), and therefore the polynomial € — y;
must be non-negative over the solution space for any ¢ > 0. It is not as obvious whether or
not an SoS proof of this non-negativity exists. It turns out that there is a degree two SoS
proof as follows:

2 2

o= (Vi) (V) (Vi (7
e (@) 2

where the = is equality modulo the ideal generated by the constraints. Of course, this proof
involves coefficients of doubly-exponential size, but one can prove that they are required. We
will take e < 1/2 for simplicity. We will define a linear functional ¢ : R[Y]; — R satisfying
the following:

ple —y] = —¢

#[p?] > 0 for any p? of degree at most d

dloi(y? — yir1)] = 0 for any i <n — 1 and o; of degree at most d — 2

n—1

[8\yn)l < (26)*" ndA].

If such a ¢ exists, then for any degree d SoS proof of non-negativity

n—1

e—y1=> h*+> iy} —yir1) + Ay,

=1

apply ¢ to both sides. We obtain —e < P + 0 + ¢[Ay;], where P > 0. Because |¢[\y;]| <
(26)2" || A|l, A must contain a coefficient of size at least Q% (i)2 ).
To show that such a ¢ exists, we define it as follows. By the constraints, every monomial

is equivalent to some power of y;. For example, y1y2y3 = yi. More generally, the constraints
nogi-lg

) o 227B
imply that [}, yf =y ’. Define ¢ by,

¢ (,H v/ ) = (2022 7F

One can easily check that this ¢ satisfies the above. Note that none of the variables y; in the
above system are Boolean, which we achieve in the upcoming section.
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5.2 A Boolean System

One simple way to try to make the system Boolean is to just add the constraints y? = y; to
the system. Unfortunately, in that case it is easy to prove that y; —y; = 0 for each ¢ and j,
and of course y,, = y2 = 0. It is too easy for SoS to figure out what each y; should look like.
Previously, the variables were unconstrained in any way, and we want to imitate that. We
draw inspiration from the Knapsack problem, and we instead replace each instance of the
variable y; with a sum of 2k Boolean variables

yi = Y wij — k,
J

and we consider the non-negative polynomial ¢ — (> ;W15 — k). Clearly there is a degree two
proof of non-negativity for this polynomial since we can just replace each instance of y; with
> wij — kin (%)

It remains to show that there are no other proofs that have only small coefficients. Here,
we use the fact that the Knapsack problem is hard for SoS: there is no SoS proof of degree
less than (k) that 3, w;; — k& is not equal to any number r € (0,1) [8]. This allows us to use

the Knapsack pseudodistribution to "pretend" that jwij — k= (26)2i71. Specifically, for
each r € (0,1), there is a linear functional ¢, defined on polynomials of 2k Boolean variables
which satisfies

drloij(wi; — wij)] = 0 for any oy; up to degree O(k)

ér[A - ((22; wij — k) —r)] = 0 for any polynomial A up to degree O(k)

ér[p?] > 0 for any polynomial p? of degree at most O(k).
Now, take the linear functional ® defined on each polynomials of 2kn variables defined in
the following way: Let T'=Ty UT, U ---UT, where T; is a multiset that contains only the
variables corresponding to y;, and let wr denote the associated monomial. Then define

(I)[wT] = ¢26 (wT1)¢(26)2 (sz) s ¢(2€)2"*1 (an)'

Clearly ® is non-negative on squares and ®[o;;(w?; — wy;)] = 0 for any o up to degree Q(k).

Because ®[A(Y_; wi; — k)] = D[(26)2" " \], @ also satisfies DIN((X; wij — k)% — (32 Wit1,5 —
k))] =0 for each A and 1 <4 <n — 1. Finally, because each variable is Boolean, ® of any
monomial is at most one, so for any monomial war, Y[war (3 ; wnj — k)2 = ®[(26)2" wa] <

(2€)2"". There are at most (nk)? monomials, so PN, wny — k)% < (nk)?(2¢)2" || Al

Just as before, the existence of ® implies that any degree d proof of non-negativity for

€ — (> w1 — k) must contain coefficients of size at least Q(W . (2%)2 ). If we set k =n,
then there are n? variables and no proof of non-negativity with coefficients smaller than
doubly-exponential until degree n. This proves Theorem 2.

6 Max-Bisection Constraints

In this section, we prove our earlier claim that the MAX-BISECTION constraints admit rich
solutions. Recall the constraints:

P(n) = {zF — z]i € 2n]} U {ZIZ —n}.

Recall that to prove S is rich, we have to prove that it is spectrally rich, robust, and complete.

Since the solution space lies in the hypercube, it is spectrally rich by Lemma 7, and it is
clearly robust since Q is empty. It remains to prove that it is complete for some k. This
proof follows a very similar path to [5], due to the similar symmetry of the constraints.
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» Lemma 11. P(n) is d-complete for any d < n.

» Remark. A reviewer has pointed out that this is already essentially known by combining
Corollary B.6 of [14] with Theorem 3.5 of [6]. We include a proof here for completeness.

Proof. Let S(n) denote the solution space of P(n), and let M = E,cs[v(a)v(a)?]. Any zero
eigenvector ¢ of M can be associated with a polynomial ¢T'v. Since ¢T Mc = E,es((cTv(a))?]
and "' Mc = 0, we must have cTv(a) = 0 for each o € S. We argue that any degree d
polynomial which is identically zero on S(n) must have a degree d derivation from P(n).

We proceed by induction on d. If d = 0, the only constant polynomial zero on S(n) is the
zero polynomial, which has the trivial derivation. Now consider the case of d = c+ 1. We
proceed in two parts. First, if r is fully symmetric, we show that it has a degree d derivation.
Secondly, for any polynomial p which is zero on S(n), we prove that p — ﬁ > ves, 0P has
a degree d derivation from P, where o acts on p by permuting the labels of the variables.
Taken together, these two facts imply that r has a degree d derivation from P(n).

To prove the first part, note that a symmetric polynomial r is a linear combination of the
elementary symmetric polynomials ey, ..., e., and it is clear that ex(x) can be derived by
taking the polynomial (3, z; — n)¥, reducing it to multilinear using the Boolean constraints,
and then reducing by e;(x) for each ! < k. This will result in a constant polynomial, which
must be the zero polynomial since we are only adding polynomials which are zero on S(n),
so the resulting polynomial must be zero on S(n).

To prove the second part, let o;; be the transposition of labels ¢ and j, and consider the
polynomial r — ;7. Writing r = r;x; + rjx; + 145225 + i, where none of r;,7;,r;;, nor g;;
depend on z; or x;, we can rewrite

r—oyr=(r —r;)(T; —xj).

Now because r — o7 evaluates to zero on any Boolean string with exactly n ones, if we
set ; = 1 and z; = 0, we know that r; — r; is a polynomial that must evaluate to zero on
any Boolean string with exactly n — 1 ones. Because deg(r; —r;) = d — 1, by the inductive
hypothesis, ; —r; has a degree d — 1 proof from P(n—1) (since d < n, clearly d—1 < n—1).
This implies that (r; — r;)(z; — x;) has a degree d — 1 proof from P(n):

(ri —r)(ws —az) = | D Melaf —ze) + A | D w—(n=1) || (zi — )

t#£i,j t#i,j

:Z)\;(xf—xt)—l—)\ Z ze—(n—1)4 (z; +z; — 1) | (¥ — )
¢ ti,j

= Zké(xf *xt) + N (th n)

where we used the fact that (2;+x; —1)(x; —x;) — (27 — ;) + (27 —x;) = 0. The degree of this
derivation is at most d because each \; has degree at most d — 3, and \; = \;(z; — x;), and
similarly for A. Thus the inductive hypothesis implies that » — 0;;7 has a degree d derivation,
and since transpositions generate the symmetric group, this implies that r — (2#71), Yoo 5, 0T

has a degree d proof from P(n). <

» Remark. In this example, P is not a Grobner basis for its ideal (P). Indeed, the Grobner
basis for this ideal has exponential size. This is an example where our framework is applicable,
even though Grobner bases are intractable to compute.
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