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Abstract
Given a string S of length n, the classic string indexing problem is to preprocess S into a compact
data structure that supports efficient subsequent pattern queries. In the deterministic variant the
goal is to solve the string indexing problem without any randomization (at preprocessing time or
query time). In the packed variant the strings are stored with several character in a single word,
giving us the opportunity to read multiple characters simultaneously. Our main result is a new
string index in the deterministic and packed setting. Given a packed string S of length n over
an alphabet σ, we show how to preprocess S in O(n) (deterministic) time and space O(n) such
that given a packed pattern string of length m we can support queries in (deterministic) time
O (m/α+ logm+ log log σ) , where α = w/ log σ is the number of characters packed in a word of
size w = Θ(logn). Our query time is always at least as good as the previous best known bounds
and whenever several characters are packed in a word, i.e., log σ � w, the query times are faster.
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1 Introduction

Let S be a string of length n over an alphabet of size σ. The string indexing problem is to
preprocess S into a compact data structure that supports efficient subsequent pattern queries.
Typical queries include existential queries (decide if the pattern occurs in S), reporting
queries (return all positions where the pattern occurs), and counting queries (returning the
number of occurrences of the pattern).

The string indexing problem is a classic well-studied problem in combinatorial pattern
matching and the standard textbook solutions are the suffix tree and the suffix array (see
e.g., [9, 10, 11, 14]). A straightforward implementation of suffix trees leads to an O(n)
preprocessing time and space solution that given a pattern of length m supports existential
and counting queries in time O(m log σ) and reporting queries in time O(m log σ + occ),
where occ is the number of occurrences of the pattern. The suffix array implemented with
additional arrays storing longest common prefixes leads to a solution that also uses O(n)
preprocessing time and space while supporting existential and counting queries in time

∗ Supported by the Danish Research Council (DFF – 4005-00267, DFF – 1323-00178).
† Supported by the Danish Research Council (DFF – 4005-00267, DFF – 1323-00178).
‡ Supported by the Danish Research Council (DFF – 1323-00178).

© Philip Bille, Inge Li Gørtz, and Frederik Rye Skjoldjensen;
licensed under Creative Commons License CC-BY

28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017).
Editors: Juha Kärkkäinen, Jakub Radoszewski, and Wojciech Rytter; Article No. 6; pp. 6:1–6:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CPM.2017.6
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


6:2 Deterministic Indexing for Packed Strings

O(m+ logn) and reporting queries in time O(m+ logn+ occ). If we instead combine suffix
trees with perfect hashing [7] we obtain O(n) expected preprocessing time and O(n) space,
while supporting existential and counting queries in time O(m) and reporting queries in time
O(m+ occ). The above bounds hold assuming that the alphabet size σ is polynomial in n.
If this is not the case, additional time for sorting the alphabet is required [5]. For simplicity,
we adopt this convention in all of the bounds throughout the paper.

In the deterministic variant the goal is to solve the string indexing problem without any
randomization. In particular, we cannot combine suffix trees with perfect hashing to obtain
O(m) or O(m + occ) query times. In this setting Cole et al. [4] showed how to combine
the suffix tree and suffix array into the suffix tray that uses O(n) preprocessing time and
space and supports existential and counting queries in O(m + log σ) time and reporting
queries in O(m+ log σ + occ) time. Recently, the query times were improved by Fischer and
Gawrychowski [6] to O(m+ log log σ) and O(m+ log log σ + occ), respectively.

In the packed variant the strings are given in a packed representation, with several
characters in a single word [3, 2, 1, 13]. For instance, DNA-sequences have an alphabet
of size 4 and are therefore typically stored using 2 bits per character with 32 characters
in a 64-bit word. On packed strings we can read multiple characters in constant time
and hence potentially do better than the immediate Ω(m) or Ω(m+ occ) lower bound for
existential/counting queries and reporting queries, respectively. In this setting Takagi et
al. [13] recently introduced the packed compact trie that stores packed strings succinctly and
also supports dynamic insertion and deletions of strings. In a static and deterministic setting
their data structure implies a linear space and superlinear time preprocessing solution that
uses O(mα log logn) and O(mα log logn+ occ) query time, respectively.

In this paper, we consider the string indexing problem in the deterministic and packed
setting simultaneously, and present a solution that improves all of the above bounds.

1.1 Setup and result
We assume a standard unit-cost word RAM with word length w = Θ(logn), and a standard
instruction set including arithmetic operations, bitwise boolean operations, and shifts. All
strings in this paper are over an alphabet Σ of size σ. The packed representation of a string A
is obtained by storing α = w/ log σ characters per word thus representing A in O(|A| log σ/w)
words. If A is given in the packed representation we simply say that A is a packed string.

Throughout the paper let S be a string of length n. Our goal is to preprocess S into a
compact data structure that given a packed pattern string P supports the following queries.

Count(P ): Return the number of occurrence of P in S.
Locate(P ): Report all occurrences of P in S.
Predecessor(P ): Returns the predecessor of P in S, i.e., the lexicographically largest suffix
in S that is smaller than P .

We show the following main result.

I Theorem 1. Let S be a string of length n over an alphabet of size σ and let α =
w/ log σ be the number of characters packed in a word. Given S we can build an index
in O(n) deterministic time and space such that given a packed pattern string of length m
we can support Count and Predecessor in time O(mα + logm+ log log σ) and Locate in time
O(mα + logm+ log log σ + occ) time.

Compared to the result of Fischer and Gawrychowski [6], Thm 1 is always at least as good
and whenever several characters are packed in a word, i.e., log σ � w, the query times are
faster. Compared to the result of Takagi et al. [13], our query time is a factor log logn faster.
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Technically, our results are obtained by a novel combination of previous techniques. Our
general tree decomposition closely follows Fischer and Gawrychowski [6], but different ideas
are needed to handle packed strings efficiently. We also show how to extend the classic suffix
array search algorithm to handle packed strings efficiently.

2 Preliminaries

2.1 Deterministic hashing and predecessor
We use the following results on deterministic hashing and predecessor data structures.

I Lemma 2 (Ružić [12, Theorem 3]). A static linear space dictionary on a set of k keys can
be deterministically constructed in time O(k(log log k)2), so that lookups to the dictionary
take time O(1).

Fischer and Gawrychowski [6] use the same result for hashing characters. In our context we
will apply it for hashing words of packed characters.

I Lemma 3 (Fischer and Gawrychowski [6, Proposition 7]). A static linear space predecessor
data structure on a set of k keys from a universe of size u can be constructed deterministically
in O(k) time and O(k) space such that predecessor queries can be answered deterministically
in time O(log log u).

2.2 Suffix tree
The suffix tree TS of S is the compacted trie over the n suffixes from the string S. We assume
that the special character $ 6∈ Σ is appended to every suffix of S such that each string is
ending in a leaf of the tree. The edges are sorted lexicographically from left to right. We say
that a leaf represents the suffix that is spelled out by concatenating the labels of the edges on
the path from the root to the leaf. For a node v in TS , we say that the subtree of v is the tree
induced by v and all proper descendants of v. We distinguish between implicit and explicit
nodes: implicit nodes are conceptual and refer to the original non branching nodes from
the trie without compacted paths. Explicit nodes are the branching nodes in the original
trie. When we refer to nodes that are not specified as either explicit or implicit, then we
are always referring to explicit nodes. The lexicographic ordering of the suffixes represented
by the leaves corresponds to the ordering of the leaves from left to right in the compacted
trie. For navigating from node to child, each node has a predecessor data structure over the
first characters of every edge going to a child. With the predecessor data structure from
Lemma 3 navigation from node to child takes O(log log σ) time and both the space and the
construction time of the predecessor data structure is linear in the number of children.

2.3 Suffix array
Let S1, S2, . . . , Sn be the n suffixes of S from left to right. The suffix array SAS of S gives the
lexicographic ordering of the suffixes such that SSAS [i] refers to the ith lexicographically largest
suffix of S. This means that for every 1 < i ≤ n we have that SSAS [i−1] is lexicographically
smaller than SSAS [i]. For simplicity we let SAS [i] refer to the suffix SSAS [i] and we say that
SAS [i] represents the suffix SSAS [i]. Every suffix from S with pattern P as a prefix will be
located in a consecutive range of SAS . This range corresponds to the range of consecutive
leaves in the subtree spanned by the explicit or implicit node that represents P in TS . We
can find the range of SAS where P prefixes every suffix by performing binary search twice
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over SAS . A naïve binary search takes O(m logn) time: We maintain the boundaries, L and
R, of the current search interval and in each iteration we compare the median string from
the range L to R in SAS , with P , and update L and R accordingly. This can be improved
to O(m+ logn) time if we have access to additional arrays storing the value of the longest
common prefixes between a selection of strings from SAS . We construct the suffix array from
the suffix tree in O(n) time.

3 Deterministic index for packed strings

In this section we describe how to construct and query our deterministic index for packed
strings. This structure is the basis for our result in Thm 1. For short patterns where
m < logσ n− 1 we store tabulated data that enables us to answer queries fast. We construct
the tables in O(n) time and space and answer queries in O(log log σ + occ) time. For long
patterns where m ≥ logσ n − 1 we use a combination of a suffix tree and a suffix array
that we construct in O(n) time and space such that queries take O(m/α+ log logn+ occ)
time. For m ≥ logσ n− 1 we have that log logn = log( logn

logσ log σ) = log logσ n+ log log σ ≤
log(logσ n − 1) + 1 + log log σ ≤ logm + 1 + log log σ. This gives us a query time of
O(m/α+ logm+ log log σ + occ) for the deterministic packed index. We need the following
connections between TS and SAS : For each explicit node t in TS we store a reference to the
range of SAS that corresponds to the leaves spanned by the subtree of t and for each index
in SAS we store a reference to the corresponding leaf in TS that represents the same string.

We first describe our word accelerated algorithm for matching patterns in SAS that we
need for answering queries on long patterns. Then we describe how to build and use the data
structures for answering queries on short and long patterns.

3.1 Packed matching in SAS

We now show how to word accelerate the suffix array matching algorithm by Manber and
Myers [10]. They spend O(m) time reading P but by reading α characters in constant time
we can reduce this to O(m/α). We let LCP(i, j) denote the length of the longest common
prefix between the suffixes SAS [i] and SAS [j] and obtain the result in Lemma 4.

I Lemma 4. Given the suffix array SAS over the packed string S and a data structure for
answering the relevant LCP queries, we can find the lexicographic predecessor of a packed
pattern P of length m in SAS in O(m/α+ logn) time where α is the number of characters
we can pack in a word.

In the algorithm by Manber and Myers we maintain the left and right boundaries of the
current search interval of SAS denoted by L and R and the length of the longest common
prefix between SAS [L] and P , and between SAS [R] and P , that we denote by l and r,
respectively. Initially the search interval is the whole range of SAS such that L = 1 and
R = n. In an iteration we do as follows: If l = r we start comparing SAS [M ] with P from
index l + 1 until we find a mismatch and update either L and l, or R and r, depending on
whether SAS [M ] is lexicographically larger or smaller than P . Otherwise, when l 6= r, we
perform an LCP query that enable us to either halve the range of SAS without reading from
P or start comparing SAS [M ] with P from index l+ 1 as in the l = r case. When l > r there
are three cases: If LCP(L,M) > l then P is lexicographically larger than SAS [M ] and we set
L to M and continue with the next iteration. If LCP (L,M) < l then P is lexicographically
smaller than SAS [M ] and we set R to M and set r to LCP(L,M) and continue with the
next iteration. If LCP (L,M) = l then we compare SAS [M ] and P from index l + 1 until
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i + c′ . . . i − 1 i . . . i + c 000 i + c + 1 . . . i+α− 1 i + α . . . i+ c+α 000

i . . . i + c 000..000 . . . 000..000 000 000..000 . . . 000..000 i + c + 1 . . . i+α− 1 101

w1 w2

s1 s2 g

Figure 1 Alignment of α characters that extends over a word boundary where c′ = c + 1 − α.
The relevant part of the lower word w1 and upper word w2 is combined with bitwise shifts, a bitwise
or and the g bits on the right is set to 0.

we find a mismatch. Let that mismatch be at index l + i. If the mismatch means that P
is lexicographically smaller than SAS [M ] then we set R to M and set r to l + i − 1 and
continue with the next iteration. If the mismatch means that P is lexicographically larger
than SAS [M ] then we set L to M and set l to l + i− 1 and continue with the next iteration.
Three symmetrical cases exists when r > l.

We generalize their algorithm to work on word packed strings such that we can compare
α characters in constant time. In each iteration where we need to read from P we align the
next α characters from P and SAS [M ] such that we can compare them in constant time:
Assume that we need to read the range from i to i+ α− 1 in P . If this range of characters
is contained in one word we do not need to align. Otherwise, we extract the relevant parts
of the words that contain the range with bitwise shifts and combine them in walign with a
bitwise or. See Figure 1. We align the α characters from SAS [M ] in the same way and store
them in w′align.

We use a bitwise exclusive or operation between walign and w′align to construct a word
where the most significant set bit is at a bit position that belong to the mismatching character
with the lowest index. We obtain the position of the most significant set bit in constant time
with the technique of Fredman and Willard [8]. From this we know exactly how many of
the next α characters that match and we can increase i accordingly. Since every mismatch
encountered result in a halving of the search range of SAS we can never read more than
O(logn) incomplete chunks. The number of complete chunks we read is bounded by O(m/α).
Overall we obtain a O(m/α + logn) time algorithm for matching in SAS . This result is
summarized in Lemma 4.

3.2 Handling short patterns

Now we show how to answer count, locate and lexicographic predecessor queries on short
patterns. We store an array containing an index for every possible pattern P where m <

logσ n− 1 and at the index we store a pointer to the deepest node in TS that prefixes P . We
call this node dP . We use dP as the basis for answering every query on short patterns. We
assume that the range in SAS spanned by dP goes from l to r. We answer predecessor queries
as follows: If P is lexicographically smaller than SAS [0] then P has no predecessor in SAS .
Otherwise, we find the predecessor as follows: If dP represents P then the predecessor of P is
located at index l− 1 of SAS . Otherwise, we assume that dP prefixes P with i characters and
need to decide whether P continues on an edge out of dP or P deviates from TS in dP . We
do this by querying the predecessor data structure over the children of dP with the character
at position i+ 1 of P . If this query does not return an edge, then P [i+ 1] is lexicographically
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smaller than the first character of every edge out of dP , and the predecessor of P is the string
located at index l − 1 of SAS . If this query returns an edge epred then there are two cases.
Case 1: The first character of epred is not identical to P [i+ 1]. Then the predecessor of P is

the lexicographically largest string in the subtree under epred.
Case 2: The first character on epred is identical to P [i+1]. In this case, if there exists an edge

e′pred out of dP on the left side of epred, then the predecessor of P is the lexicographically
largest string in the subtree under e′pred and otherwise the predecessor is the string at
index l − 1 of SAS .

We report the node in TS that represents the predecessor of P .
We let epred be defined as above and answer count queries as follows: If dP represents P

we return the number of leaves spanned by dP in TS . If P instead continues and ends on
epred we report the number of leaves spanned by the subtree below epred. We answer locate
queries in the same way but instead of reporting the range we report the strings in the range.

We find dP in O(1) time and epred in O(log log σ) time. In total we answer predecessor
and count queries in O(log log σ) time and locate queries in O(log log σ + occ) time

Since m < logσ n − 1 there exists σ + σ2 + . . . + σblogσ n−1c ≤ σblogσ nc ≤ σlogσ n = n

short patterns and we compute them in O(n) time by performing a preorder traversal of TS
bounded to depth logσ n− 1. Let dP be the node we are currently visiting and let dnext be
the node we visit next. When we visit dP we fill the tabulation array for every string that is
lexicographically larger than or equal to the string represented by dP and lexicographically
smaller than the string represented by dnext. Every short string can be stored in a word of
memory and therefore we can index the tabulation array with the numerical value of the
word that represent the string. We fill each of these indices with a pointer to dP since dP is
the deepest node in TS that represents a string that prefixes these strings. We can store the
tabulation array in O(n) space.

3.3 Handling long patterns

Now we show how to answer count, locate and lexicographic predecessor queries on long
patterns. We first give an overview of our solution followed by a detailed description of the
individual parts. In TS we distinguish between light and heavy nodes. If a subtree under
a node spans at least log2 logn leaves, we call the node heavy, otherwise we call it light.
A node is a heavy branching node if it has at least two heavy children and all the heavy
nodes constitute a subtree that we call the heavy tree. We decompose the heavy tree into
micro trees of height α and we augment every micro tree with a data structure that enables
navigation from root to leaf in constant time. For micro trees containing a heavy branching
node we do this with deterministic hashing and for micro trees without a heavy branching
node we just compare the relevant part of P with the one unique path of the heavy tree
that goes through the micro tree. To avoid navigating the light nodes we in each light node
store a pointer to the range of SAS that the node spans. We construct two predecessor data
structures for each micro tree: The light predecessor structure over the strings represented
by the light nodes that are connected to the heavy nodes in the micro tree and the heavy
predecessor structure over the heavy nodes in the micro tree. We answer queries on P as
follows: We traverse the heavy tree in chunks of α characters until we are unable to traverse
a complete micro tree. This means that P either continues in a light node, ends in the micro
tree or deviates from TS in the micro tree. We can decide if P continues in a light node with
the light predecessor structure and if this is the case we answer the query with the packed
matching algorithm on the range of SAS spanned by the light node. Otherwise, we use the
heavy predecessor structure for finding dP in the micro tree and use dP for answering the
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α

α

...

α

α

Figure 2 The decomposition of HTS in micro trees of height α. One micro tree is shown with
the root at string depth α and the boundary nodes at string depth 2α.

query as in section 3.2. The following sections describes in more detail how we build our
data structure and answer queries.

3.3.1 Data structure

This section describes our data structure in details. If a subtree under a node in TS spans at
least log2 logn leaves, we call the node heavy. The heavy tree HTS is the induced subgraph
of all the the heavy nodes in TS . We decompose HTS into micro trees of string depth α.
This decomposition into micro trees of height α was also employed by Takagi et al. [13]. A
node, explicit or implicit, is a boundary node if its string depth is a multiple of α. Except for
the original root and leaves of HTS , each boundary node belongs to two micro trees i.e., a
boundary node at depth dα is the root in a micro tree that starts at string depth dα and is
a leaf in a micro tree that starts at string depth (d− 1)α. Figure 2 shows the decomposition
of HTS into micro trees of string depth α.

We augment every micro tree with information that enables us to navigate from root to
leaf in constant time. To avoid using too much space we promote only some of the implicit
boundary nodes to explicit nodes. We distinguish between three kinds of micro trees:

Type 1. At least one heavy branching node exists in the micro tree: We promote the
root and leaves to explicit nodes and use deterministic hashing to navigate the micro tree
from root to leaf. Because the micro tree is of height α, each of the strings represented
by the leaves in the micro tree fits in a word and can be used as a key for hashing. We
say that the root is a hashing node and the leaves are hashed nodes. We will postpone
the analysis of time and space used by the micro trees that use hashing for navigation.
Type 2. No heavy branching node exists in the micro tree: When the micro tree does
not contain a heavy branching node, the micro tree is simply a path from root to leaf.
Here we distinguish between two cases:

Type 2a. The micro tree contains an explicit non branching heavy node: We promote
the root and leaf to explicit nodes. Navigating from root to leaf takes constant time
by comparing the string represented by the leaf with the appropriate part of P . We
charge the space increase from the promotion of the root and leaf to the explicit non
branching heavy node. Since there are at most n explicit non branching heavy nodes
we never promote more than 2n implicit nodes from type 2a micro trees.
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Type 2b. The micro tree does not contain an explicit heavy node: Let t be a micro
tree with no explicit heavy nodes. If the root of t is a leaf in a micro tree that contains
an explicit heavy node, we promote the root of t to an explicit node and store a
pointer to the root of the nearest micro tree below t that contains an explicit heavy
node. The path from root to root corresponds to a substring in S that we navigate
by comparing this string to the appropriate part of P . We charge the space increase
from the promotion of the root to the heavy node descendant. Since we have at most
n explicit heavy nodes we promote no more than n implicit nodes from type 2b micro
trees. If the root of t is a leaf in a micro tree without an explicit heavy node we do
not promote the root of t.

We say that a node in TS is a heavy leaf if it is a heavy node with no heavy children. We
want to bound the number of heavy branching nodes and heavy leaves. Every heavy leaf
spans at least log2 logn leaves of TS . This means we can have at most n/ log2 logn heavy
leaves in TS . Since we have at most one branching heavy node per heavy leaf the number of
heavy branching nodes is at most n/ log2 logn.

We want to bound the number of implicit nodes that are promoted to explicit hashed
nodes. This number is critical for constructing all hash functions in O(n) time. We bound
the number of promoted hashed nodes by associating each with the nearest descendant that
is either a heavy branching node or a heavy leaf: Let l be a promoted hashed node in a
micro tree that contain a heavy branching node h. Then every promoted hashed node above
l is associated with h or a node above h in the tree. Hence, no other promoted node can
be associated with the first encountered heavy branching or leaf node below l. Since we
have at most O(n/ log2 logn) heavy branching and heavy leaf nodes we also have at most
O(n/ log2 logn) implicit nodes that are promoted to explicit hashed nodes.

With deterministic hashing from Lemma 2 the total time for constructing the explicit
hashing nodes are given as follows. Here H is the set of all the hash functions and we bound
the elements in every hash function h to n/ log2 logn.

O

(∑
h∈H

|h| log2 log |h|
)

= O

(∑
h∈H

|h| log2 log(n/ log2 logn)
)

= O

(
log2 log(n/ log2 logn) ·

∑
h∈H

|h|

)
= O

(
log2 log(n/ log2 logn) n

log2 logn

)
= O(n)

Summing the elements of every hash function is bounded by the maximum number of
promoted nodes, i.e. O(n/ log2 logn). To conclude, we spend linear time constructing the
hash functions in the micro trees that contain a heavy branching node.

We associate two predecessor data structures with each micro tree that contains a heavy
node: The first predecessor structure contains every light node that is a child of a heavy
node in the micro tree. We call this predecessor data structure for the light predecessor
structure of the micro tree. The key for each light node is the string on the path from the
root of the micro tree to the node itself padded with character $ such that every string has
length α. These keys are ordered lexicographically in the predecessor data structure and a
successful query yields a pointer to the node. The second predecessor structure is similar to
the first but contains every heavy node in the micro tree. We call this predecessor structure
for the heavy predecessor structure. We use Lemma 3 for the predecessor structures. The
total size of every light and heavy predecessor structures is O(n) and a query in both takes
O(log logn) because the universe is of size (σ + 1)α.
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For each light node that are a child of a heavy node we additionally store pointers to the
range of SAS that corresponds to the leaves in TS that the light node spans.

3.3.2 Answering queries
We answer queries on long patterns as follows. First we search for the deepest micro tree
in HTS where the root prefixes P . We do this by navigating the heavy tree in chunks of α
characters starting from the root. Assuming that we have already matched a prefix of P
consisting of i chunks of α characters we need to show how to match the (i+ 1)th chunk: If
the micro tree is of type 1 and P has length at least (i+ 1)α, we try to hash the substring
P [iα, (i+ 1)α]. If we obtain a node v from the hash function we continue matching chunk
P [(i+ 1)α, (i+ 2)α] from v. If the micro tree is of type 2 we compare α sized chunks of P
with the string on the unique path from root to the first micro tree with an explicit root
and continue matching from here. We have found the deepest micro tree where the root
prefixes P when we are unable to match a complete chunk of α characters or are unable to
reach a micro tree with an explicit root. From this micro tree we need to decide whether the
query is answered by searching SAS from a light node or answered by finding dP in the micro
tree, where dP is defined as in Section 3.2, i.e. the deepest node in TS that prefixes P . We
check if P continues in a light node by querying the light predecessor structure of the micro
tree with the next unmatched α characters from P and pad with character $ if less than α
characters remain unmatched in P . If the light node returned by the query represents a
string that prefixes P we answer the query by searching the range of SAS spanned by the
light node with the packed matching algorithm.

When P does not continue in a light node we instead find and use dP for answering the
query: If the micro tree is of type 2b or the root of the micro tree represents P then dP is the
root of the micro tree. Otherwise, we find dP with a technique, very similar to a technique
used by Fredman and Willard [8], that queries the heavy predecessor structure three times
as follows: We call the remaining part of P , padded to length α with character $, for p0. We
first query the predecessor structure with p0 which yields a node that represents a string
n0. We then construct a string, p1, that consists of the longest common prefix of p0 and
n0, and as above, padded to length α. We query the predecessor structure with p1 which
yields a new node that represents a string n1. We then construct a string, p2, that consists
of the longest common prefix of p0 and n1, again padded to length α. At last, we query
the predecessor structure with p2 which returns dP . Given dP , we answer count, locate and
lexicographic predecessor queries exactly as we did in Section 3.2.

Now we prove the correctness of our queries. First we prove that if P continues in a
light node then the query in the light predecessor structure returns that light node: Assume
that P goes through the light node lP that has a heavy parent in the micro tree Tp and
that we query the light predecessor structure with the string Qα. Let Lpred be the string
that represents lP in the light predecessor structure. Since P goes through lP then Lpred is
identical or lexicographically smaller than Qα. Let L′pred be the successor of Lpred in the light
predecessor structure. Since Lpred is lexicographically smaller than L′pred and has a longer
common prefix with Qα than L′pred has with Qα, then L′pred must be lexicographically larger
than Qα. Since Qα is identical or lexicographically larger than Lpred and lexicographically
smaller than L′pred, a query on Qα in the light predecessor structure will return lP .

We now prove that the queries in the heavy predecessor structure always returns dP :
Because P is not prefixed by a leaf of the micro tree or a light node from the light predecessor
structure we know that dP is a heavy node in the micro trie. In Figure 3, dP is depicted
and P either ends on or deviates from the edge e that leads to the tree T2. The trees T1,
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dP

T2T1 T3

Figure 3 Searching for a prefix of P in HTS .

T2 and T3 combined with dP and the edge e constitute the subtree of dP . If P deviates to
the left or ends on e then P is lexicographically smaller than every string represented in T2.
If P deviates to the right then P is lexicographically larger than every string represented
in T2. Assume that P deviates to the right on e. Then the query to the heavy predecessor
structure with pattern p0 will yield n0 that represents the lexicographically largest string
in T2. The pattern p1 will then be represented by the implicit node from where P deviates
from e. The pattern p1 is lexicographically smaller than every string represented in T2 and a
query will yield n2 as the lexicographically largest node in T1 or, if T1 is empty, the node dP .
Either way, the query on p2 will yield the node dP . We can make similar arguments for the
other cases where P ends on e, deviates left from e, ends at dP or goes through dP without
following e.

The following gives an analysis of the running time of our queries. We spend at most
O(m/α) time traversing the heavy tree. Both predecessor structures contains strings over
a universe of size n such that a query takes O(log logn) time using Lemma 3. Each light
node spans at most log2 logn leaves which corresponds to an interval of length log2 logn
in SAS that we search in O(m/α+ log log logn) time with the word accelerated algorithm
for matching in SAS . Overall, we spend O(m/α+ log logn) time for answering count and
lexicographic predecessor queries and O(m/α + log logn + occ) time for answering locate
queries. Since we only query this data structure for patterns where m ≥ logσ n− 1 we have
that log logn = log( logn

logσ log σ) = log logσ n+ log log(σ) ≤ log(logσ n− 1) + 1 + log log(σ) ≤
log(m) + 1 + log log(σ), such that we answer count and lexicographic predecessor queries in
O(m/α+ logm+ log log σ) time and locate queries in O(m/α+ logm+ log log σ+ occ) time.
Combined with our solution for patterns where m < logσ n − 1, that answer the queries
in O(log log σ) and O(log log σ + occ) time, respectively, we can for patterns of any length
answer count and lexicographic predecessor queries in O(m/α+ logm+ log log σ) time and
locate queries in O(m/α + logm + log log σ + occ) time. This is our main result which is
summarized in Thm 1.
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