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Abstract
We consider document listing on string collections, that is, finding in which strings a given pattern
appears. In particular, we focus on repetitive collections: a collection of sizeN over alphabet [1, σ]
is composed of D copies of a string of size n, and s single-character edits are applied on the copies.
We introduce the first document listing index with size Õ(n+s), precisely O((n lg σ+s lg2 N) lgD)
bits, and with useful worst-case time guarantees: Given a pattern of length m, the index reports
the ndoc strings where it appears in time O(m2 +m lgN(lgD + lgεN) · ndoc), for any constant
ε > 0.
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1 Introduction

Document retrieval on general string collections is an area that has recently attracted
attention [24]. On the one hand, it is a natural generalization of the basic Information
Retrieval tasks carried out on search engines [1, 4], many of which are also useful on Far East
languages, collections of genomes, code repositories, multimedia streams, etc. It also enables
phrase queries on natural language texts. On the other hand, it raises a number of algorithmic
challenges that are not easily addressed with classical pattern matching approaches.

In this paper we focus on one of the simplest document retrieval problems, document
listing [22]. Let D be a collection of D documents of total length N . We want to build an
index on D such that, later, given a search pattern P of length m, we report the identifiers
of all the ndoc documents where P appears. Given that P may occur occ� ndoc times in
D, resorting to pattern matching, that is, finding all the occ occurrences and then listing the
distinct documents where they appear, can be utterly inefficient. Optimal O(m+ ndoc) time
document listing solutions appeared only in 2002 [22], although they use too much space.
There are also more recent statistically compressed indices [29, 15] with a small time penalty.

In particular, we are interested in highly repetitive string collections [23], which are formed
by a few distinct documents and a number of near-copies of those. Such collections arise,
for example, when sequencing the genomes of thousands of individuals of a few species,
when managing versioned collections of documents like Wikipedia, and in versioned software
repositories. Although many of the fastest-growing datasets are indeed repetitive, this is
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4:2 Document Listing on Repetitive Collections

an underdeveloped area: most succinct indices for string collections are based on statistical
compression, and these fail to exploit repetitiveness [19].

1.1 Our contribution
There are few document listing indices that profit from repetitiveness. A simple model
to analyze them is as follows [21, 12, 23]: Assume there is a single document of size n
on alphabet [1, σ], and D − 1 copies of it, on which s single-character edits are arbitrarily
distributed, forming a collection of size N ≈ nD. This models, for example, collections of
genomes and their single-point mutations. The gold standard to measure space usage on
repetitive collections is the size of the Lempel-Ziv parsing [20]. If we parse the concatenation
of the strings in such a repetitive collection, we obtain at most z = n/ lgσ n + O(s) � N

phrases. Therefore, while a statistical compressor would require basically N lg σ bits if the
base document is incompressible [19], we can aim to reach as little as O(n lg σ + s lgN) bits
by exploiting repetitiveness via Lempel-Ziv compression.

This might be too optimistic for an index, however, as there is no known way to extract
substrings efficiently from Lempel-Ziv compressed text. Instead, grammar compression allows
extracting any text symbol in logarithmic time using O(r lgN) bits, where r is the size of the
grammar [3, 31]. It is possible to obtain a grammar of size r = O(z lg(N/z)) [5, 16], which
using standard methods [28] can be tweaked to r = n/ lgσ N +s lgN under our repetitiveness
model. Thus the space we might aim at for indexing is O(n lg σ + s lg2 N) bits.

Although they perform reasonably well in practice, none of the preceding structures
for document listing on repetitive collections [8, 12] offer good worst-case time guarantees
combined with space guarantees that are appropriate for repetitive collections, that is, growing
with n+s rather than with N . Those offering search times of the form O(poly(m, lgN) ·ndoc)
require space of the form O(N/poly(lgN)). In this paper we present the first index offering
good guarantees in space and time. Namely, our index

1. uses O((n lg σ + s lg2 N) lgD) bits of space, and
2. performs document listing in time O(m2 +m lgN(lgD + lgεN) · ndoc), for any constant

ε > 0.

That is, our index is an O(lgD) space factor away from what could be hoped from a
grammar-based index. We actually build on a grammar-based document listing index [8]
that stores lists of the documents where each nonterminal appears, and strengthen it by
rearranging the nonterminals in different orders, following a wavelet tree [13] deployment
that guarantees that only O(m lg r) ranges of lists have to be merged at query time. We
do not store the lists themselves in various orders, but just succinct range minimum query
(RMQ) data structures [11] that allow implementing document listing on ranges of lists
[29]. Those RMQ structures are further compressed because their underlying data has long
increasing runs, so the structures are reduced with techniques analogous to those developed
for the ILCP data structure [12]. The space reduction brings new issues, however, because
we cannot afford storing the underlying RMQ sequences. These problems are circumvented
with a new, tailored, technique to extract the distinct documents in a range.

2 Related work

The first optimal-time and linear-space solution to document listing is due to Muthukrishnan
[22], who solves the problem in O(m+ ndoc) time using an index of O(N lgN) bits of space.
Later solutions [29, 15] improved the space to essentially the statistical entropy of D, at the
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price of multiplying the times by low-order polylogs of N (e.g., O(m+ lgN · ndoc) time with
O(N) bits on top of the entropy). As said, however, statistical entropy does not capture
repetitiveness well [19], and thus these solutions are not satisfactory in repetitive collections.

There has been a good deal of work on pattern matching indices for repetitive string
collections, building on various principles (see [26, Sec 13.2]). However, there has been little
work on document retrieval structures for repetitive string collections.

One precedent is Claude and Munro’s index based on grammar compression [8]. It
builds on a grammar-based pattern-matching index [10] and adds an inverted index that
explicitly indicates the documents where each nonterminal appears; this inverted index is
also grammar-compressed. To obtain the answer, an unbounded number of those lists of
documents must be merged. No relevant worst-case time or space guarantees are offered.

Another precedent is ILCP [12], where it is shown that the longest common prefix array
(LCP) of repetitive collections has long increasing runs. Then an index of size bounded
by the runs in the suffix array [21] and in the LCP array performs document listing in
time O(search(m) + lookup(N) · ndoc), where search and lookup are the search and lookup
time, respectively, of a run-length compressed suffix array [21]. Yet, there are only average-
case bounds for the size of the structure in terms of s: O(n lgN + s lg2 N) bits. A more
serious problem is that, to obtain lookup(N) time per document, a suffix array sampling of
O(N lgN/lookup(N)) bits must be stored.

The last previous work is PDL [12], which stores inverted lists at sampled nodes in the
suffix tree of D, and then grammar-compresses the set of inverted lists. For a sampling step
b, it requires O((N/b) lgN) bits plus the (unbounded) space of the inverted lists. Searches
that lead to the sampled nodes have their answers precomputed, whereas the others cover a
suffix array range of size O(b) and are solved by brute force in time O(b · lookup(N)). Again,
the suffix array sampling of O(N lgN/lookup(N)) bits is necessary.

3 Basic Concepts

3.1 Listing the different elements in a range
Let A[1, t] be an array of integers in [1, D]. Muthukrishnan [22] gives a structure that, given
a range [i, j], lists all the ndoc distinct elements in A[i, j] in time O(ndoc). He defines an
array C[1, t] storing in C[k] the largest position l < k where A[l] = A[k], or C[k] = 0 if no
such position exists. Note that the leftmost positions of the distinct elements in A[i, j] are
exactly those k where C[k] < i. He then stores a data structure supporting range-minimum
queries (RMQs) on C, rmqC(i, j) = argmini≤k≤jC[k] [11]. Given a range [i, j], he computes
k = rmqC(i, j). If C[k] < i, then he reports A[k] and continues recursively on A[i, k− 1] and
A[k + 1, j]. Whenever it turns out that C[k] ≥ i for an interval [x, y], there are no leftmost
occurrences of A[i, j] within A[x, y], so this interval can be abandoned. It is easy to see that
the algorithm takes O(ndoc) time and uses O(t lg t) bits of space; the RMQ structure uses
just 2t+ o(t) bits and answers queries in constant time [11].

Furthermore, the RMQ structure does not even access C, so we can replace C by a
bitvector V [1, D] to mark which elements have been reported. We set V initially to all zeros
and replace the test C[k] < i by V [A[k]] = 0, that is, the value A[k] has not yet been reported
(these tests are equivalent only if we recurse left and then right in the interval [24]). If so,
we report A[k] and set V [A[k]] ← 1. Overall, we need only O(t + D) bits of space on top
of A, and still run in O(ndoc) time [29] (V can be reset to zeros by rerunning the query or
through lazy initialization). Hon et al. [15] further reduce the extra space to o(t) bits, yet
increasing the time, via sampling the array C.
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3.2 Wavelet trees

A wavelet tree [13] is a sequence representation that supports, in particular, two-dimensional
orthogonal range queries [6, 25]. Let (1, y1), (2, y2), . . . , (r, yr) be a sequence of points with
yi ∈ [1, r], and let S = y1y2 . . . yr be the y coordinates in order. The wavelet tree is a
perfectly balanced binary tree where each node handles a range of y values. The root handles
[1, r]. If a node handles [a, b] then its left child handles [a, µ] and its right child handles
[µ + 1, b], with µ = b(a + b)/2c. The leaves handle individual y values. If a node handles
range [a, b], then it represents the subsequence Sa,b of y coordinates that belong to [a, b].
Thus at each level the strings Sa,b form a permutation of S. What is stored for each such
node is a bitvector Ba,b so that Ba,b[i] = 0 iff Sa,b ≤ µ, that is, if that value is handled in
the left child of the node. Those bitvectors are provided with support for rank and select
queries: rankv(B, i) is the number of occurrences of bit v in B[1, i], whereas selectv(B, j) is
the position of the jth occurrence of bit v in B. The wavelet tree has height lg r, and its
total space requirement for all the bitvectors Ba,b is r lg r bits. The extra structures for rank
and select add o(r lg r) further bits and support the queries in constant time [7]. With the
wavelet tree one can recover any yi value by tracking it down from the root to a leaf, but let
us describe a more general procedure.

Let [x1, x2] × [y1, y2] be a query range. The number of points that fall in the range
can be counted in O(lg r) time as follows. We start at the root with the range S[x1, x2] =
S1,r[x1, x2]. Then we project the range both left and right, towards S1,µ[rank0(B1,r, x1 −
1) + 1, rank0(B1,r, x2)] and Sµ+1,r[rank1(B1,r, x1 − 1) + 1, rank1(B1,r, x2)], respectively, with
µ = b(r + 1)/2c. If some of the ranges is empty, we stop the recursion on that node. If the
interval [a, b] handled by a node is disjoint with [y1, y2], we also stop. If the interval [a, b] is
included in [y1, y2], then all the points in the x range qualify, and we simply sum the length
of the range to the count. Otherwise, we keep splitting the ranges recursively. It is well
known that the range [y1, y2] is covered by O(lg r) wavelet tree nodes, and that we traverse
O(lg r) nodes to reach them. If we also want to report all the corresponding y values, then
instead of counting the points found, we track each one individually towards its leaf, in
O(lg r) time. At the leaves, the y values are sorted, so in particular if they are a permutation
of [1, r], we know that the ith left-to-right leaf is the value y = i. Thus, extracting the nocc
results takes time O((1 + nocc) lg r).

3.3 Range minimum queries on arrays with runs

Let A[1, t] be an array that can be cut into ρ runs of nondecreasing values. Then it is possible
to solve RMQs in O(lg lg t) time plus O(1) accesses to A using O(ρ lg(t/ρ)) bits. The idea
is that the possible minima (breaking ties in favor of the leftmost) in A[i, j] are either A[i]
or the positions where runs start in the range. Then, we can use a sparse bitvector M [1, t]
marking with M [k] = 1 the run heads. We also define an array A′[1, ρ], so that if M [k] = 1
then A′[rank1(M,k)] = A[k]. We do not store A′, but just an RMQ structure on it. Hence,
the minimum of the run heads in A[i, j] can be found by computing the range of run heads
involved, i′ = rank1(M, i − 1) + 1 and j′ = rank1(M, j), then finding the smallest value
among them in A′ with k′ = rmqA′(i′, j′), and mapping it back to A with k = select1(M,k′).
Finally, the RMQ answer is either A[i] or A[k], so we access A twice to compare them.

This idea was used by Gagie et al. [12, Sec 3.2] for runs of equal values, but it works
verbatim for runs of nondecreasing values. They show how to store M in ρ lg(t/ρ) +O(ρ)
bits so that it solves rank in O(lg lg t) time and select in O(1) time, by enriching a sparse
bitvector representation [27]. This dominates the space and time of the whole structure.
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The idea was used even before by Barbay et al. [2, Thm. 2], for runs of nondecreasing
values. They represented M using ρ lg(t/ρ) + O(ρ) + o(t) bits so that the O(lg lg t) time
becomes O(1), but we are not be able to afford the o(t) extra bits in this paper.

3.4 Grammar compression
Let T [1, N ] be a sequence of symbols over alphabet [1, σ]. Grammar compressing T means
finding a context-free grammar that generates T and only T . The grammar can then be
used as a substitute for T , which provides good compression when T is repetitive. We are
interested, for simplicity, in grammars in Chomsky normal form, where the rules are of the
form A→ BC or A→ a, where A, B, and C are nonterminals and a ∈ [1, σ] is a terminal
symbol. For every grammar, there is a proportionally sized grammar in this form.

A Lempel-Ziv parse [20] of T cuts T into z phrases, so that each phrase T [i, j] appears
earlier in T [i′, j′], with i′ < i. It is known that the smallest grammar generating T must have
at least z rules [28, 5], and that it is possible to convert a Lempel-Ziv parse into a grammar
with r = O(z lg(N/z)) rules [28, 5, 30, 17, 18]. Furthermore, such grammars can be balanced,
that is, the parse tree is of height O(lgN). By storing the length of the string to which
every nonterminal expands, it is easy to access any substring T [i, j] from its compressed
representation in time O(j− i+ lgN) by tracking down the range in the parse tree. This can
be done even on an unbalanced grammar [3]. The total space used by this representation,
with a grammar of r rules, is O(r lgN) bits.

3.5 Grammar-based indexing
The pattern-matching index of Claude and Navarro [9] builds on a grammar in Chomsky
normal form that generates a text T [1, N ], with r+ 1 rules. Let s(A) be the string generated
by nonterminal A. Then they collect the strings s(A) for all those nonterminals, except the
initial symbol S. Let C1, . . . , Cr be the nonterminals sorted lexicographically by s(A) and let
B1, . . . , Br be the nonterminals sorted lexicographically by the reverse strings, s(A)rev. They
create a set of points in [1, r]× [1, r] so that (i, j) is a point (corresponding to nonterminal
A) if the rule that defines A is A→ BiCj . Those points are stored in a wavelet tree.

To search for a pattern P [1,m], they first find the primary occurrences, that is, those
that appear when B is concatenated with C in a rule A→ BC. The secondary occurrences,
which appear when A is used elsewhere, are found in a way that does not matter for this
paper. To find the primary occurrences, they cut P into two nonempty parts P = P1P2,
in the m − 1 possible ways. For each cut, they binary search for P rev1 in the sorted
set s(B1)rev, . . . , s(Br)rev and for P2 in the sorted set s(C1), . . . , s(Cr). Let [x1, x2] be
the interval obtained for P1 and [y1, y2] the one obtained for P2. Then all the points in
[x1, x2]× [y1, y2], for all the m− 1 partitions of P , are the primary occurrences.

To search for P rev1 or for P2, the grammar is used to extract the required substrings of
T in time O(m+ lgN), so the overall search time to find the nocc primary occurrences is
O(m lg r(m+ lgN) + lg r · nocc). The space used by the structure is O(r lgN) bits. Within
this space one can store Patricia trees on the strings s(Brevi ) and s(Ci), to speed up binary
searches and reduce the time to O(m(m+lgN)+lg r ·nocc). Also, one can use the structure of
Gasieniec et al. [14] that, within O(r lgN) further bits, allows extracting any prefix/suffix of
any nonterminal in constant time per symbol (see also [10]). Since in our search we only access
prefixes/suffixes of whole nonterminals, this further reduces the time to O(m2 + lg r · nocc).

Claude and Munro [8] extend this structure to support document listing on a collection
D of D string documents, which are concatenated into a text T [1, N ]. To each nonterminal
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A they associate the increasing list `(A) of the identifiers of the documents (integers in
[1, D]) where A appears. To perform document listing, they find all the primary occurrences
A→ BC of all the partitions of P , and merge their lists. There is no useful worst-case time
bound for this operation other than O(nocc · ndoc), where nocc can be much larger than
ndoc. To reduce space, they also grammar-compress the sequence of all the r lists `(A). They
also give no worst-case space bound for the compressed lists (other than O(rD lgD) bits).

4 Our Document Listing Index

We build on the basic structure of Claude and Munro [8]. Our main idea is to take advantage
of the fact that the nocc primary occurrences to detect in Section 3.5 are found as points in the
two-dimensional structure, along O(lg r) ranges within wavelet tree nodes (recall Section 3.2)
for each partition of P . Instead of retrieving the nocc individual lists, decompressing and
merging them [8], we will use the techniques to extract the distinct elements of a range seen
in Section 3.1. This will drastically reduce the amount of merging necessary, and will provide
useful upper bounds on the document listing time.

4.1 Structure
We store the grammar of T in a way that it allows direct access for pattern searches, as well as
the wavelet tree for the points (Bi, Cj), the Patricia trees, and extraction of prefixes/suffixes
of nonterminals, all in O(r lgN) bits.

Consider any sequence Sa,b[1, q] at a wavelet tree node handling the range [a, b] (recall
that those sequences are not explicitly stored). Each element Sa,b[k] = Ak corresponds to a
point (i, j) associated with a nonterminal Ak → BiCj . Then let La,b = `(A1) · `(A2) · · · `(Aq)
be the concatenation of the inverted lists associated with the nonterminals in Sa,b, and let
Ma,b = 10|`(A1)|−110|`(A2)|−1 . . . 10|`(Aq)|−1 mark where each list begins in La,b. Now let Ca,b
be the C-array corresponding to La,b, as described in Section 3.1. As in that section, we do
not store La,b nor Ca,b, but just the RMQ structure on Ca,b, which together with Ma,b will
be used to retrieve the unique documents in a range Sa,b[i, j].

Since Ma,b has only r 1s out of (at most) rD bits across all the wavelet tree nodes of
the same level, it can be stored with O(r lgD) bits per level [27], and O(r lg r lgD) bits
overall. On the other hand, as we will show, Ca,b is formed by a few increasing runs, say ρ
across the wavelet tree nodes of the same level, and therefore we represent its RMQ structure
using the technique of Section 3.3. The total space used by those RMQ structures is then
O(ρ lg r lg(rD/ρ)) bits.

Finally, we store the explicit lists `(Bi) aligned to the wavelet tree leaves, so that the list
of any element in any sequence Sa,b is reached in O(lg r) time by tracking down the element.
Those lists, of maximum total length rD, are grammar-compressed as well, just as in the
basic scheme [8]. If the grammar has r′ rules, then the total compressed size is O(r′ lg(rD))
bits to allow for direct access in O(lg(rD)) time, see Section 3.4.

In total, our structure uses O(r lgN + r lg r lgD + ρ lg r lg(rD/ρ) + r′ lg(rD)) bits.

4.2 Document listing
A document listing query proceeds as follows. We cut P in the m − 1 possible ways, and
for each way identify the O(lg r) wavelet tree nodes (and ranges) where the desired points
lie. Overall, we have O(m lg r) ranges and need to take the union of the inverted lists of all
the points inside those ranges. We extract the distinct documents in each range and then
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compute their union. If a range has only one element, then we can track it to the leaves,
where its list `(·) is stored, and recover it by decompressing the whole list.

Otherwise, we use in principle the document listing technique of Section 3.1. Let Sa,b[i, j]
be a range from where to obtain the distinct documents. We compute i′ = select1(Ma,b, i)
and j′ = select1(Ma,b, j + 1) − 1, and obtain the distinct elements in La,b[i′, j′], by using
RMQs on Ca,b[i′, j′]. Recall that, as in Section 3.3, we use a run-length compressed RMQ
structure on Ca,b. With this arrangement, every RMQ operation takes time O(lg lg(rD))
plus the time to accesses two cells in Ca,b. Those accesses are made to compare a run head
with the leftmost element of the query interval, Ca,b[i′]. The problem is that we have not
represented the cells of Ca,b, and cannot easily compute them on the fly.

Barbay et al. [2, Thm. 3] give a sophisticated representation that determines the position
of the minimum in Ca,b[i′, j′] without the need to perform the two accesses on Ca,b. They
need ρ lg(rD) + ρ lg(rD/ρ) +O(ρ) + o(rD) bits, which unfortunately is too high for us1.

Instead, we modify the way the distinct elements are obtained, so that comparing the
two cells of Ca,b is unnecessary. In the same spirit of Sadakane’s solution (see Section 3.1)
we use a bitvector V [1, D] where we mark the documents already reported. Given a range
Sa,b[i, j] = Ai . . . Aj , we first track Ai down the wavelet tree, recover and decompress its
list `(Ai), and mark all of its documents in V . Note that all the documents in the list
`(·) are different. Now we do the same with Ai+1, decompressing `(Ai+1) left to right and
marking the documents in V , and so on, until we decompress a document `(Ai+d)[k] that is
already marked in V . Only now we use the RMQ technique of Section 3.3 on the interval
Ca,b[i′, j′], where i′ = select1(Ma,b, i+ d)− 1 + k and j′ = select1(Ma,b, j + 1)− 1, to obtain
the next document to report. This technique, as explained, yields two candidates: one is
La,b[i′] = `(Ai+d)[k] itself, and the other is some run head La,b[k′] whose identity we can
obtain from the wavelet tree leaf. But we know that La,b[i′] was already reported, so we act
as if the RMQ was always La,b[k′]: If the RMQ answer was La,b[i′] then, since it is already
reported, we should stop. But in this case, La,b[k′] is also already reported and we do stop
anyway. Hence, if La,b[k′] is already reported we stop, and otherwise we report it and continue
recursively on the intervals Ca,b[i′, k′ − 1] and Ca,b[k′ + 1, j′]. On the first, we can continue
directly, as we still know that La,b[i′] is already reported. On the second interval, instead,
we must restore the invariant that the leftmost element was already reported. So we find out
withM the list and position `(At)[u] corresponding to Ca,b[k′+1] (i.e., t = rank1(Ma,b, k

′+1)
and u = k′+ 1− select1(M, t) + 1), track At down to its leaf in the wavelet tree, and traverse
`(At) from position u onwards, reporting documents until finding one that has been reported.
The correctness of this document listing algorithm is proved in Appendix A.

The m− 1 searches for partitions of P take time O(m2). In the worst case, extracting
each distinct document in the range requires an RMQ computation without access to Ca,b
(O(lg lg(rD)) time), tracking an element down the wavelet tree (O(lg r) time), and extracting
an element from its grammar-compressed list `(·) (O(lg(rD) time). This adds up to O(lg(rD))
time per document extracted in a range. In the worst case, however, the same documents
are extracted over and over in all the O(m lg r) ranges, and therefore the final search time is
O(m2 +m lg r lg(rD) · ndoc).

1 Even if we get rid of the o(rD) component, the ρ lg(rD) term becomes O(s lg3 N) in the final space,
which is larger than what we manage to obtain. Also, using it does not make our solution faster.
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5 Analysis in a Repetitive Scenario

Our structure uses O(r lgN + r lg r lgD + ρ lg r lg(rD/ρ) + r′ lg(rD)) bits, and performs
document listing in time O(m2 + m lg r lg(rD) · ndoc). We now specialize those formulas
under our repetitiveness model. Note that our index works on any string collection; we use
the simplified model of the D − 1 copies of a single document of length n, plus the s edits,
to obtain analytical results that are easy to interpret in terms of repetitiveness. We also
assume a particular strategy to generate the grammars to show that it is possible to obtain
the complexities we give; the actual index may use more sophisticated ones.

5.1 Space
We assume s ≥ D − 1, since otherwise there will be identical documents, and this is easily
reduced to a smaller collection with multiple identifiers per document. The documents are
concatenated into T [1, N ], where N ≤ nD + s. Let us make our grammar for T contain
the N1/3 nonterminals that generate all the strings of length 1

3 lgσ N . Then it replaces the
first document with O(n/ lgσ N) such nonterminals, and builds a balanced parse tree of
height h = O(lgn) on top of them, with nonterminal symbol S at the root. On the copies,
it first covers them with D − 1 copies of S. Now, for each edit that occurs on a copy, let
A1, . . . , Ah be the nonterminals from the leaf (where the edit is applied) to the root Ah = S.
We create new nonterminals A′1, . . . , A′h′ so that h′ ≤ h + 1 and A′h′ = S′ generates the
modified document. All the other nonterminals can be reused. Therefore, the maximum
height h′ of the final nonterminal S′ rooting a modified document is O(lg(n + s)), which
is reached when many of the edits apply to a single copy. The final grammar size is then
r = O(N1/3 + n/ lgσ N + s lg(n+ s)) = O(n/ lgσ N + s lgN), where we used that either n or
s is Ω(

√
N) because N ≤ nD + s ≤ n(s+ 1) + s. Once all the edits are applied, we add a

balanced tree on top of those r symbols, which asymptotically does not change r (we may
also avoid this final tree and access the documents individually, since our accesses never cross
document borders).

Let us now bound ρ. If there are no edits, then every nonterminal appears in all the
documents, so all the lists are of the form `(A) = 1, 2, . . . , D. Therefore, all the corresponding
C values are C[k] = k −D, and C has just one nondecreasing run (the first D values are 0,
and thus included in the run too). Let us consider the effect of an edit operation at some
document d. When we update the upward path A1, A2, . . . , Ah and create nonterminals
A′1, A

′
2, . . . , A

′
h′ to reflect the edit, document d may disappear from all the lists `(Ai). Each

of those (up to) h′ disappeared documents produces a change in C, where the cell that
pointed to the disappeared position now points earlier, and this may break one run. There
are other h′ updates due to the creation of the lists for the nonterminals A′i. Overall, array
C undergoes O(lgN) run breaks per edit, and therefore it has a total of ρ = O(s lgN) runs.

The analysis of r′ is analogous. When there are no edits and `(A) = 1, 2, . . . , D for all
nonterminals A, we can represent the lists with a grammar of O(D) symbols generating
one list from nonterminal U , and then r − 1 copies of U . Now, an edit in a document d
that removes d from the lists of nonterminals A1, . . . , Ah produces O(lgN) edits in the lists
`(A1), . . . , `(Ah) (and new lists `(A′i) as well). As done for the text, the grammar needs to
add O(lgD) nonterminals to modify the copy of U of each list `(Ai), from the point where
d disappears to the root U . The new lists `(A′i) also fit within the same space. Therefore,
the final grammar is of size r′ = O(D + s lgN lgD) = O(s lgN lgD). Instead of adding a
balanced grammar tree over the r resulting nonterminals U ′, we retain direct pointers to
those roots. As a result, the lists, of maximum length D, need O(r′ lgD) bits and can be
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accessed in time O(lgD). From the wavelet tree, however, we still have to pay also the
O(lg r) time needed to identify the list to access.

Therefore, the total size of the index can be expressed as follows. The O(r lg r lgD) bits
coming from the sparse bitvectors M , is O(r lgN lgD) (since lg r = Θ(lg(ns)) = Θ(lgN)),
and thus it is O(n lg σ lgD+ s lg2 N lgD). This subsumes the O(r lgN) bits of the grammar
and the wavelet tree. The O(ρ lg r lg(rD/ρ)) bits of the structures C are monotonically
increasing with ρ, so since ρ = s lgN ≤ r, we can upper bound it by replacing ρ with r,
obtaining O(r lg r lgD) as in the space for M . Finally, the O(r′ lgD) bits of the explicit
inverted lists are O(s lgN lg2 D). Overall, the structures add up to O((n lg σ + s lg2 N) lgD)
bits. Note that we can also analyze the space required by Claude and Munro’s structure [8],
which is O(r lgN) bits plus the inverted lists, O(n lg σ+ s lgN(lgN + lg2 D)) bits. Although
smaller than ours, their search time has no useful bounds.

5.2 Time
Our search time is O(m2 +m lg r lg(rD) · ndoc) = O(m2 +m lg2 N · ndoc). The O(lg(rD))
cost corresponds to accessing a list `(A) from the wavelet tree, and includes the O(lg r) time
to reach the leaf and the O(lgD) time to access a position in the grammar-compressed list.
It is possible to reduce the O(lg r) wavelet tree time by spending more space. The trick is
to track the positions upwards to the root, not downwards to the leaves, and associate the
lists `(A) aligned to the root order. It is possible to reach the root position of a symbol in
time O((1/ε) lgε r) by using O((1/ε)r lg r) bits [6, 25], for any ε > 0. By using a constant ε
we obtain our main result.

I Theorem 1. Let collection D, of total size N , be formed by an initial document of length
n plus D − 1 copies of it, with s single-character edit operations applied on the copies. Then
D can be represented within O((n lg σ+ s lg2 N) lgD) bits, so that the ndoc documents where
a pattern of length m appears can be listed in time O(m2 +m lgN(lgD + lgεN) · ndoc), for
any constant ε > 0.

We can also obtain other tradeoffs. For example, with ε = 1/ lg lg r we obtain O((n lg σ +
s lg2 N)(lgD + lg lgN)) bits of space and O(m2 +m lgN(lgD + lg lgN) · ndoc) search time.

6 Conclusions

We have presented the first document listing index with worst-case space and time guarantees
that are useful for repetitive collections. On a collection of size N formed by an initial
document of length n and D− 1 copies it, with s single-character edits applied on the copies,
our index uses O((n lg σ + s lg2 N) lgD) bits and lists the ndoc documents where a pattern
of length m appears in time O(m2 +m lgN(lgD+ lgεN) · ndoc), for any constant ε > 0. We
also prove a slightly lower space bound on a previous index that had not been analyzed [8],
but which has no useful worst-case time bounds for listing.

The space of our index is an O(lgD) factor away from what can be expected from a
grammar-based index. This is the price paid for storing the inverted lists of the nonterminals.
An important question is whether this space factor can be removed, that is, if the inverted
lists can be represented within the grammar-compressed size of the text itself.

Another interesting question is whether there exists an index (or a better analysis of this
index) whose space and time can be bounded on more general repetitiveness measures of the
collection, for example in terms of the number z of Lempel-Ziv phrases into which it can be
parsed. In our model it holds z ≤ n/ lgσ n + O(s), but other kinds of plausible repetitive
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collections have s � z, for example if the edits apply to ranges of documents, or if they
involve blocks of text inserted, deleted, or moved around. Typical grammar-based pattern
matching indices [9, 10] require O(r lgN) = O(z lg2 N) bits in general; it would be good to
obtain the same in the document-listing grammar-based indices.

Finally, there is the question of how much of the theoretical improvements over previous
work [8] can be translated into practice. This is also a subject of future work. On one hand,
our upper bounds are utterly pessimistic when they assume that the same documents will
be reported O(m lg r) times; the average case should be much better. On the other hand,
practical improvements are possible over the basic theoretical ideas presented, which should
allow us effectively avoid the cases where the previous index deviates significantly from our
worst-case time guarantees, without ruining the cases where it performs well. For example,
we can list the documents by brute force when the wavelet tree ranges are short, and use the
document listing algorithm only on the long ones, where it is worth applying.
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A Proof of Correctness

We prove that our new document listing algorithm is correct. We remind that the algorithm
proceeds as follows, to find the distinct elements in A[sp, ep]. It starts recursively with
[i, j] = [sp, ep] and remembers the documents that have already been reported, globally. To
process interval [i, j], it considers A[i], A[i+ 1], . . . until finding an already reported element
at A[d]. Then it finds the minimum C[k] in C[d, j]. If A[k] has been reported already, it
stops; otherwise it reports A[k] and proceeds recursively in A[d, k− 1] and A[k+ 1, j], in this
order. (The algorithm does this without noticing the cases where k = d, but this is correct,
as explained in Section 4.2).

I Lemma 2. The described algorithm reports the ndoc distinct elements in A[sp, ep] in
O(ndoc) steps.

Proof. We prove that the algorithm reports the leftmost occurrence in A[sp, ep] of each
distinct element. In particular, we prove by induction on i (and, upon ties, on j − i) that,
when run on any subrange [i, j] of [sp, ep], (1) every leftmost occurrence in A[sp, i − 1]
is already reported before processing [i, j] and (2) every leftmost occurrence in A[sp, j] is
reported after processing [i, j]. Invariant (1) holds for [i, j] = [sp, ep], and the recursive
procedure always produces intervals with nondecreasing values of i. Then the base case i = j

is trivial: the algorithm checks A[i] and reports it if it was not reported before. On a larger
interval [i, j], the algorithm first reports d− i occurrences of distinct elements in A[i, d− 1].
Since these were not reported before, by invariant (1) they must be leftmost occurrences in
[sp, ep], and thus after doing this the invariant (1) holds for any range starting at d.

Now, we compute the position k with minimum C[k] in C[d, j]. Note that A[k] is
a leftmost occurrence iff C[k] < sp. In this case, it has not been reported before and
thus it must be reported by the algorithm. The algorithm then recurses on A[d, k − 1],
reports A[k], and finally recurses on A[k + 1, j].2 Since those subintervals are inside [i, j],
we can apply induction. In the call on A[d, k − 1], the invariant (1) holds and thus by
induction we have that after the call the invariant (2) holds, so all the leftmost occurrences
in A[sp, k − 1] = A[sp, d− 1] ·A[d, k − 1] have been reported. After we report A[k] too, the
invariant (1) also holds for the call on A[k+ 1, j], so by induction all the leftmost occurrences
in A[sp, j] have been reported when the call returns.

In case C[k] ≥ sp, A[k] is not a leftmost occurrence in A[sp, ep], and moreover there
are no leftmost occurrences in A[d, j], so we can stop since all the leftmost occurrences in

2 Since A[k] does not appear in A[d, k−1], the algorithm also works if A[k] is reported before the recursive
calls, which makes it real-time.
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A[sp, j] = A[sp, d− 1] ·A[d, j] are already reported. Indeed, if the leftmost occurrence of A[k]
is in A[sp, d− 1], then we had already reported it by invariant (1), so the algorithm stops.

Then the algorithm is correct. As for the time, clearly the algorithm never reports the
same element twice. The sequential part reports d− i documents in time O(d− i+ 1). The
extra O(1) can be charged to the caller, as well as the O(1) cost of the subranges that do
not produce any result. Each calling procedure reports at least one element A[k], so it can
absorb those O(1) costs, for a total cost of O(ndoc). J
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