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Abstract

Suppose Alice holds a uniformly random string X ∈ {0, 1}N and Bob holds a noisy version Y

of X where each bit of X is flipped independently with probability ε ∈ [0, 1
2 ]. Alice and Bob

would like to extract a common random string of min-entropy at least k. In this work, we
establish the communication versus success probability trade-off for this problem by giving a
protocol and a matching lower bound (under the restriction that the string to be agreed upon is
determined by Alice’s input X). Specifically, we prove that in order for Alice and Bob to agree
on a common string with probability 2−γk (γk > 1), the optimal communication (up to o(k)
terms, and achievable for large N) is precisely (C(1−γ)−2

√
C(1− C)γ)k, where C := 4ε(1−ε).

In particular, the optimal communication to achieve Ω(1) agreement probability approaches
4ε(1− ε)k.

We also consider the case when Y is the output of the binary erasure channel onX, where each
bit of Y equals the corresponding bit of X with probability 1− ε and is otherwise erased (that is,
replaced by a ‘?’). In this case, the communication required becomes (ε(1− γ)− 2

√
ε(1− ε)γ)k.

In particular, the optimal communication to achieve Ω(1) agreement probability approaches εk,

and with no communication the optimal agreement probability approaches 2
− 1−

√
1−ε

1+
√

1−ε
k
.

Our protocols are based on covering codes and extend the approach of (Bogdanov and Mossel,
2011) for the zero-communication case. Our lower bounds rely on hypercontractive inequalities.
For the model of bit-flips, our argument extends the approach of (Bogdanov and Mossel, 2011) by
allowing communication; for the erasure model, to the best of our knowledge the needed hyper-
contractivity statement was not studied before, and it was established (given our application) by
(Nair and Wang 2015). We also obtain information complexity lower bounds for these tasks, and
together with our protocol, they shed light on the recently popular “most informative Boolean
function” conjecture of Courtade and Kumar.
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6:2 Tight Bounds for Communication-Assisted Agreement Distillation

1 Introduction

Suppose Alice holds a string X = (x1, x2, . . . ) of uniformly random bits and Bob holds a
correlated random string Y = (y1, y2, . . . ) where the bit yj is the bit xj flipped (independently
for each j) with probability ε ∈ (0, 1). Their goal is to communicate as little as possible and
agree on a uniformly random string in {0, 1}k (or under a relaxed requirement, sample a
common string from a distribution of min-entropy at least k).

Besides being a natural task, this scenario also relates to the problem of extracting a
unique ID from process variations; see [5], which studied the communication free version of
this question, for further discussion of this motivation. The agreement distillation problem
also naturally arises in the context of simulating communication protocols that use perfect
shared randomness when the parties only share correlated randomness, and was recently
studied with this motivation in [6]. The underlying information-theoretic question, on the
maximum information a function of X can convey about its noisy version Y , has also received
widespread interest lately, following the appealing conjecture made in [9] that a dictator
(or canalizing) function is the most informative Boolean function (the one maximizing
I[f(X) : Y ]).

Our work is a follow-up to [6, 5] and is motivated by questions such as: How many
bits of communication are needed for the agreement distillation task to succeed with high
probability? At the other extreme, what is the best success probability of a strategy that
involves no communication? More precisely, what is the trade-off between communication
and success probability?

Note that there are two trivial protocols: one where Alice simply sends the first k bits of
X to Bob (which achieves agreement probability of 1), and a zero-communication protocol
where both players simply output their first k bits as the common randomness (which achieves
agreement probability of (1− ε)k). The former protocol does not exploit the fact that Bob
holds a string Y which is correlated with X. How much can we leverage this to save on
communication while at the same time ensuring good agreement probability? A simple
protocol based on capacity-achieving codes for the binary symmetric channel was given
in [6] with communication (h(ε) + o(1))k and high agreement probability; in [6], an Ω(εk)
lower bound based on [5] was also observed. This established that a factor c(ε) savings in
communication is the best one can hope for, but left a gap even in the asymptotic growth of
c(ε).

1.1 Our results
We obtain tight communication complexity upper and lower bounds for the above problem,
identifying the precise trade-off between communication and agreement probability (see
Theorem 1.1 below, our bounds are sharp up to o(k) bits). Our upper bounds are achieved
by one-way communication protocols where Alice sends a single message to Bob. Our lower
bounds hold for a slightly more general model where Alice’s output depends only on her
input X, but Bob’s output may depended on his input Y and the transcript of an arbitrary
two-way interaction with Alice. Below is a statement of the bounds we get.

I Theorem 1.1. Let γ ∈ [0, 1], ε ∈ [0, 1/2], and k > 1 be an integer. Consider the above
setting where Alice and Bob have uniformly random strings X and Y (of sufficiently large
length compared to k) that differ in each position independently with probability ε. The goal
is for Alice and Bob to agree on a shared string gA(X), which only depends on Alice’s input
X. Define C := 4ε(1− ε).
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(Upper bound) There is a protocol where gA(X) is uniformly distributed in {0, 1}k, and
Alice sends (C(1−γ)− 2

√
C(1− C)γ)k bits to Bob, who then succeeds in guessing gA(X)

with probability at least 2−γk−O(log k).
(Matching lower bound) Suppose there is a protocol with H∞[gA(X)] > k where Alice and
Bob exchange c bits after which Bob is able to guess gA(X) with probability 2−γk. Then

c > (C(1− γ)− 2
√
C(1− C)γ)k .

In particular, this implies that for large k, to achieve agreement probability Θ(1) the optimal
communication approaches 4ε(1 − ε)k, and with zero communication the best achievable
success probability approaches 2−

ε
1−εk.1

Note that in the above setup, Bob’s input Y can be viewed as X that is distorted by
a binary symmetric channel, BSC(ε), which flips each bit independently with probability
ε. Inspired by this view, one can consider a similar problem for other discrete memoryless
channels relating X and Y . We consider the binary erasure channel, BEC(ε), where each
Yj equals Xj with probability 1− ε and is erased (say, replaced by a ‘?’) with probability
ε, and obtain tight upper and lower bounds for this setting as well (basically the quantity
C = 4ε(1− ε) is replaced by ε in the bounds).

I Theorem 1.2. Let γ, ε ∈ [0, 1] and k > 1 be an integer. For the agreement distillation
problem when Y is obtained by passing X through BEC(ε), the following hold.

(Upper bound) There is a protocol where gA(X) is uniformly distributed in {0, 1}k, and
Alice sends (ε(1− γ)− 2

√
ε(1− ε)γ)k bits to Bob, who succeeds in guessing gA(X) with

probability at least 2−γk−O(log k).
(Matching lower bound) Suppose there is a protocol where H[gA(X)] > k and Alice and
Bob exchange c bits after which Bob is able to guess gA(X) with probability 2−γk. Then
c > (ε(1− γ)− 2

√
ε(1− ε)γ)k.

In particular, it can be shown that, for large k, to achieve agreement probability Θ(1) the
optimal communication approaches εk, and with zero communication the best achievable

success probability approaches 2
− (1−

√
1−ε)k

1+
√

1−ε .
We also study information complexity bounds, proving the following lower bound on the

information content needed in the protocol transcript.

I Theorem 1.3. Let gA(X) take values in the set {0, 1}k′ such that H[gA(X)] > k. Suppose
π(X,Y ) is the transcript of a protocol that enables Bob to guess gA(X) with probability at
least 1− δ, for some δ ∈ [0, 1]. Then we have

H[π(X,Y )] > 4ε(1− ε)k − δk′ − h(δ) when Y is the output of BSC(ε) on X;
H[π(X,Y )] > εk − δk′ − h(δ) when Y is the output of BEC(ε) on X.

(Note that some term like −δk′ in the lower bounds is unavoidable. For example, gA(X)
might be 0k′ with probability 1−δ and a uniformly random string in {0, 1}k′ with probability
δ. If Bob produces 0k′ always, they agree with probability 1− δ.)

Since the entropy H[π(X,Y )] lower bounds the length of the transcript, the above also
implies lower bounds on the communication complexity. However, the bounds are good only
when δ → 0, whereas Theorems 1.1 and 1.2 apply even when the success probability 1− δ is
very small, and imply communication lower bounds of (4ε(1− ε)− o(1))k and (ε− o(1))k for
any constant success probability.

1 For the problem with zero communication, lower and upper bounds in [5] already establish that the
best probability of success is 2− ε

1−ε k (see Section 1.2).

CCC 2016



6:4 Tight Bounds for Communication-Assisted Agreement Distillation

The communication upper bounds from Theorems 1.1 and 1.2 of course imply protocols
with the same upper bounds on entropy. In particular, when the failure probability δ → 0, the
optimal entropy of the transcript of an agreement distillation protocol approaches 4ε(1− ε)k
for BSC(ε) and εk for BEC(ε).

1.2 Prior and related work

The variant of agreement distillation where the goal of the two parties is to extract a single bit
without any interaction was studied independently a number of times; see [25] and references
therein. It is known that in this case the optimal protocol is for the two parties to use the
first bit. The works [16, 17] consider the problem of extracting a common random bit in the
multi-party setting where m players receive noisy versions of a common random string; in this
case for large m the majority function is close to being optimal in terms of maximizing the
agreement probability. The problem of two parties agreeing on k random bits without any
communication, when given strings X,Y correlated via BSC(ε), was considered by Bogdanov
and Mossel [5]. They proved that no strategy can achieve agreement probability better than
2−kε/(1−ε) and also gave a protocol with agreement probability O((kε)−1/2 ·2−kε/(1−ε)) when
k > Ω(1/ε).

All these results are for the model where no communication is allowed between Alice and
Bob, and the goal is to maximize the agreement probability. Canonne et al. [6] considered
the setting where Alice and Bob can communicate, and gave a simple scheme based on
capacity-achieving codes for agreeing on k random bits with high probability when Alice
sends a single message of (h(ε) + o(1))k bits to Bob. They also noted an Ω(εk) lower
bound based on the agreement probability upper bound for zero communication protocols
from [5]. Zhao and Chia [26] establish that to agree with high probability on a common
random variable K with Shannon entropy H[K] > k, the communication required approaches
precisely (1− ρ2(X1;Y1))k, where ρ(A;B) is the Hirschfeld-Gebelein-Rényi (HGR) maximal
correlation of the pair (A;B) of random variables. The HGR correlation for BSC(ε) (resp.
BEC(ε)) equals 1−2ε (resp.

√
1− ε), so this implies the communication bounds of Theorems

1.1 and 1.2, albeit for the setting of ensuring high Shannon entropy and agreement probability
tending to 1. The Shannon entropy of a random variable is lower bounded by its min-entropy,
so a lower bound for distilling randomness with Shannon entropy k implies the same lower
bound for min-entropy (our setting). But note that our lower bounds hold also for success
probability bounded away from 1, for which we have to rely on hypercontractivity based
arguments. Indeed, the main novelty in our results is the establishment of the precise trade-off
between communication and probability of agreement.

Our work focuses only on the efficiency of shared randomness generation as a function
of communication (and success probability). We allow the number of correlated samples
N → ∞ for any desired value of k, the number of shared random bits to be generated
(indeed in our protocols as presented, N will be exponential in k and we did not try to
optimize this trade-off). Prior work has also studied the efficiency of common randomness
generation as a function of N [1, 26], specifically understanding the “CR capacity” C(R)
wherein C(R)N bits of shared randomness can be generated (with high probability) using
RN bits of communication, for a fixed R > 0 and growing N .2

2 With zero communication, it is not possible to distill any common randomness with high probability,
unless the joint distribution of X1 and Y1 is decomposable, which is captured by the HGR maximal
correlation ρ(X1, Y1) equaling 1 [13, 21, 15].
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Turning to our information-theoretic results, the entropy lower bound in Theorem 1.3 for
BSC(ε) is based on the following claim. Let Xn, Y n ∈ {0, 1}n be random strings with (Xi, Yi)
being i.i.d. and related via the channel BSC(ε). Then, for every function gA : {0, 1}n → {0, 1}k
we have I[gA(Xn) : Y n] 6 (1− 2ε)2k. This upper bound on mutual information follows from
the so-called Mrs. Gerber’s Lemma [24]; such an upper bound was established using a limit
argument in [7], and is attributed to Erkip [10] in [9].

The earlier mentioned conjecture from [9] on the most informative Boolean function
asserts that when k = 1, we have I[gA(Xn) : Y n] 6 1− h(ε). If this conjecture were true for
every k, then one would have I[gA(Xn) : Y n] 6 (1− h(ε))k when the range of gA is {0, 1}k.
However, our communication protocol in Theorem 1.1 implies the existence of a function gA
for which

I[gA(Xn) : Y n] = H[gA(Xn)]−H[gA(Xn) | Y n]
> k − (4ε(1− ε) + o(1))k
= (1− 2ε)2k − o(k) > (1− h(ε))k

(for ε ∈ (0, 1/2)). So for functions outputting a large number k of bits, the projection onto
the first k bits is not the most informative function. This latter result was already established
in the recent work [7], where a function gA(Xn) based on lossy data compression (under
Hamming distortion) was shown to achieve lim infn→∞ I[gA(Xn) : Y n] > (1− 2ε)2k.

Our entropy lower bound in Theorem 1.3 for the case of BEC(ε) is based on the inequality
I[gA(Xn) : Y n] 6 (1− ε)k for an arbitrary function gA : {0, 1}n → {0, 1}, which we establish
using Shearer’s lemma. So, for the erasure channel, outputting the first k bits indeed
maximizes the information about the channel output Y n, for every k > 1, and in particular
the dictator is the most informative function when k = 1.

As an appealing conjecture bridging information theory and analysis of Boolean functions,
the most informative function conjecture of Courtade and Kumar [9] has generated a lot of
interest. Closely related problems were studied earlier by Erkip and Cover [11], and recent
works addressing aspects of the Courtade-Kumar conjecture include [2, 4, 7, 20, 14, 23, 22].

1.3 Techniques in brief
Our communication protocols are extensions of the Bogdanov-Mossel protocol [5]. Their
zero communication protocol for BSC(ε) was based on an “affine covering code" C ⊆ Fn2 of
size 2k, and both Alice and Bob rounded their inputs Xn and Y n to the closest point in C
(with some explicit rule in case of ties). The probabilistic method is used to establish the
existence of an affine space of Fn2 of dimension k such that each output is generated with the
same probability 2−k, and the agreement probability is high (at least ≈ 2−εk/(1−ε)). In our
scheme, we use different functions for Alice and Bob, with Bob searching for a codeword in
a larger radius. This will lead to a list of candidates on Bob’s side, and he will use Alice’s
message to pick a unique element from the list. Picking parameters carefully leads us to
the protocol with the optimal trade-off between communication and agreement probability
claimed in Theorem 1.1. The protocol for the erasure case in Theorem 1.2 works similarly,
with the analysis handling some technicalities by conditioning on the high probability event
of Y having close to εN erasures.

Turning to our lower bounds, as mentioned above, our entropy lower bounds are based
on Mrs. Gerber’s lemma for BSC(ε) and Shearer’s lemma for BEC(ε). Our communication
lower bounds rely on hypercontractive inequalities for the random variables corresponding
to BSC(ε) and BEC(ε). If (Xi, Yi) are i.i.d. copies of a correlated random variable (X,Y ),

CCC 2016



6:6 Tight Bounds for Communication-Assisted Agreement Distillation

and f : Xn → R, such a hypercontractive inequality upper bounds ‖E[f(X)|Y ]‖q by
the norm ‖f‖p with p < q (see Section 4.1 for the definition of these norms). The best
possible relationship between p and q depends on amount of correlation between X and Y .
For BSC(ε), it is a classical result in the analysis of Boolean functions that one can take
p = 1 + (1 − 2ε)2(q − 1) [19, Chap. 16]. The inequality for the erasure channel does not
appear to have been studied before, and we use the bound p = 1 + (1− ε)(q − 1), shown to
be valid for 1 6 q 6 3 by Nair [18], prompted by our application.

The lower bound for zero-communication in [5] was also established using hypercontrac-
tivity. The reduction to an hypercontractive inequality was more direct in their case, as the
success probability can be expressed as E(X,Y )[gA(X)gB(Y )] which equals an inner product
EX [gA(X)T1−2εgB(X)] for the Bonami-Beckner noise operator T1−2ε. When Alice is allowed
to send a message to Bob, we need a bit more care in applying the hypercontractive inequality
to deduce the lower bound. Also, as mentioned earlier, for the case of erasures, the requisite
hypercontractive inequality seems to not have been studied before.

It is natural to wonder what the situation is for more general channels besides the BSC
and the BEC. The lower bound on communication to achieve constant agreement probability,
which approaches 4ε(1 − ε)k and εk respectively for BSC(ε) and BEC(ε), arises from the
limiting ratio p−1

q−1 as q ↓ 1. For an arbitrary discrete channel (X,Y ) ∼ p(x, y), this limit has
been shown to equal

s∗(Y ;X) := sup
r(y)6=p(y)

D(r(x)||p(x))
D(r(y)||p(y)) (1)

where r(x) denotes the x-marginal distribution of r(x, y) = r(y)p(x|y) [3]. Our methods
imply a communication lower bound of (1 − s∗(Y ;X))k − o(k) for an arbitrary channel,
though we do not know if this is tight in general.

2 The model

Alice receives a random string X = (X1, X2, . . . , XN ) and Bob receives a (correlated) string
Y = (Y1, Y2, . . . , YN ). We will assume the length N of these strings is sufficiently large, but it
will otherwise not play an important role (and will be mostly suppressed) in our arguments.
Alice uses her random input string X to produce an output in {0, 1}k′ . Then, based on the
inputs, Alice and Bob interact using a two-party protocol σ to produce a transcript σ(X,Y ).
Finally, Bob produces an output in {0, 1}k′ based on his input Y and σ(X,Y ). Their goal is
to ensure that the outputs agree and have high min-entropy.

I Definition 2.1. A (k′, k, η,R)-agreement distillation protocol for a pair of random variables
R = (X,Y ) is a triple (gA, gB , σ), where σ is a two-party protocol and gA(X), gB(Y, σ(X,Y ))
∈ {0, 1}k′ , such that
1. H∞[gA(X)] > k;
2. Pr[gA(X) = gB(Y, σ(X,Y ))] > η.
Let Π(k′, k, η,R) be the collection of all (k′, k, η,R)-protocols. For π ∈ Π(k′, k, η,R), let
π(X,Y ) denote the transcript of the underlying two-party protocol on input (X,Y ). Let

hR(k′, k, η) = min
π∈Π(k′,k,η,R)

H[π(X,Y )]; (2)

cR(k′, k, η) = min
π∈Π(k′,k,η,R)

max
x,y
|π(x, y)|. (3)

We will consider two joint distributions of R = (X,Y ) in this work, where (Xi, Yi) are
independently generated as follows.
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Binary symmetric channel, BSC(N, ε): Xi is uniform in {0, 1}, and Yi = Xi with
probability (1− ε) and Yi = 1−Xi with probability ε.
Binary erasure channel, BEC(N, ε): Xi is uniform in {0, 1}, and Yi = Xi with probability
(1− ε) and Yi =? with probability ε.

3 The entropy bounds

In this section, we show the following, which implies the lower bounds claimed in Theorem 1.3.

I Theorem 3.1. We have the following lower bounds:

hBSC(N,ε)(k′, k, η) > 4ε(1− ε)k − (1− η)k′ − h(η);

hBEC(N,ε)(k′, k, η) > εk − (1− η)k′ − h(η).

Both parts of the theorem will be justified using the following idea. The channel limits the
mutual information between Alice’s output and Bob’s input. Alice’s message must, therefore,
make up for the shortfall.

I Claim 3.2.
(a) If (X,Y ) ∼ BSC(N, ε), then

I[gA(X) : Y ] 6 (1− 2ε)2 I[gA(X) : X] = (1− 2ε)2H[gA(X)]. (4)

(b) If (X,Y ) ∼ BEC(N, ε), then

I[gA(X) : Y ] 6 (1− ε) I[gA(X) : X] = (1− ε)H[gA(X)]. (5)

Proof of Theorem 3.1. First, we have

E[|Π(X,Y )|] > H[Π(X,Y )]
> I[Π(X,Y ) : gA(X)Y ]
= I[gA(X) : Π(X,Y )Y ]− I[Y : gA(X)] + I[Y : Π(X,Y )]
> H[gA(X)]−H[gA(X) | Π(X,Y )Y ]− I[Y : gA(X)] (6)
> H[gA(X)]− h(η)− (1− η)k′ − I[Y : gA(X)]. (7)

Our assumption implies that H[gA(X)] > k. We use the claim above to bound the last term
on the right.

Binary symmetric channel. From (7) and Claim 3.2 (a), we obtain

E[|Π(X,Y )] > (1− (1− 2ε)2)H[gA(X)]− h(η)− (1− η)k′

> 4ε(1− ε)k − (1− η)k′ − h(η).

Erasure channel. From (7) and Claim 3.2 (b), we obtain

E[|Π(X,Y )] > (1− (1− ε))H[gA(X)]− h(η)− (1− η)k′ > εk − (1− η)k′ − h(η) .

J

Proof of Claim 3.2.
(a) Recall the following consequence of Mrs. Gerber’s Lemma due to Wyner and Ziv [24,

Corollary 4]:

CCC 2016



6:8 Tight Bounds for Communication-Assisted Agreement Distillation

Suppose (X,W ) is a pair of random variables, where X takes values in {0, 1}N and
H[X |W ] = Nv. Let Z ∈ {0, 1}N be sequence of N independent bits, each taking
the value 1 with probability ε; let Z be independent of (X,W ). Let Y = X ⊕ Z.
Then,

H[Y |W ] > Nh(ε ∗ h−1(v)),

where h is the binary entropy function and ε ∗ v = ε(1− v) + (1− ε)v. Note that
h(ε ∗ h−1(v)) > 1− (1− v)(1− 2ε)2 (see, for example, [7]).

We take W = gA(X) in the above statement; then, H[X | W ] = H[X | gA(X)] =
N − H[gA(X)]. So, we set v = 1 − H[gA(X)]/N and conclude that H[Y | gA(X)] >
N−(1−2ε)2H[gA(X)]. Thus, I[gA(X) : Y ] = H[Y ]−H[Y | gA(X)] 6 (1−2ε)2H[gA(X)].

(b) We first derive a version of Shearer’s lemma. Let sgn(Y ) be the erasure pattern of Y ,
that is, a sequence in {0, 1}N , where the 0s correspond to erasures.

H[Y | sgn(Y ), gA(X) = z] = E
σ

[H[Y | sgn(Y ) = σ, gA(X) = z]]

= E
σ

[ ∑
i:σi=1

H[Xi | (Xj : j < i, σj = 1), g(X) = z]
]

> E
σ

[ ∑
i:σi=1

H[Xi | (Xj : j < i), g(X) = z]
]

= E
σ

[∑
i

1{σi = 1}H[Xi | (Xj : j < i), g(X) = z]
]

= (1− ε)
∑
i

H[Xi | (Xj : j < i), g(X) = z]

= (1− ε)H[X | g(X) = z].

Taking expectations of both sides over choices of z, we obtain H[Y | sgn(Y )gA(Y )] >
(1− ε)H[X | gA(X)]. Then, we have

H[Y | gA(X)] = H[Y sgn(Y ) | gA(X)]
= H[sgn(Y )] +H[Y | sgn(Y )gA(X)]
> h(ε)N + (1− ε)H[X | gA(X)]. (8)

Thus,

I[gA(X) : Y ] = H[Y ]−H[Y | gA(X)]
= h(ε)N + (1− ε)N −H[Y | gA(X)]
6 (1− ε)(N −H[X | gA(X)]) (using (8))
= (1− ε)(H[X]−H[X | gA(X)])
= (1− ε)I[X : gA(X)] = (1− ε)H[gA(X)] .

J

4 The communication lower bounds

We now turn to our lower bounds on communication, formally stated below. Note that these
imply the lower bounds claimed in Theorems 1.1 and 1.2.
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I Theorem 4.1. Let γ, ε ∈ [0, 1] and k > 1 be an integer.

cBSC(N,ε)(k′, k, 2−γk) >
[
C(1− γ)− 2

√
C(1− C)γ

]
k where C = 4ε(1− ε); (9)

cBEC(N,ε)(k′, k, 2−γk) >
[
ε(1− γ)− 2

√
ε(1− ε)γ

]
k . (10)

The arguments for the two channels, BSC(N, ε) and BEC(N, ε), differ only in the choice
of the appropriate hypercontractive inequality. We, therefore, first present the common part
of the argument. Fix a protocol π ∈ Π(k′, k, η,R), where R is either BSC(N, ε) or BEC(N, ε).
Let T denote the set of possible transcripts of π; let t = |T |. We will obtain a lower bound
on t.

Let X ,Y denote the domains of X and Y respectively; X ,Y = {0, 1}N for BSC(N, ε);
X = {0, 1}N and Y = {0, 1, ?}N for BEC(N, ε). Recall that gA(X) and gB(Y, π(X,Y )) take
values in Z = {0, 1}k′ . For y ∈ Y and z ∈ Z, let

β(z|y) := Pr[gA(X) = z | Y = y] = Pr[gA(X) = z ∧ Y = y]/Pr[Y = y];

let Success denote the event “gA(X) = gB(Y, π(X,Y ))”. For y ∈ Y, let

Zy = {gB(y, τ) : τ ∈ T };

then, ty := |Zy| 6 t. On input (x, y), if gA(x) 6∈ Zy, then Success is impossible. Arrange
z ∈ Zy as zy,1, zy,2, . . . so that β(zy,1|y) > β(zy,1|y) > · · · > β(zy,ty |y); let βy,i = β(zy,i|y).

I Claim 4.2. Let π ∈ Π(R, k, η) be a protocol with t transcripts and let q > 1. Then,

Pr[Success] 6 E
Y

[
tY∑
i=1

βY,i

]
6

(∑
z

E
Y

[β(z|Y )q]
)1/q

· t1−1/q. (11)

Proof. When Alice sends no message, Bob’s best strategy on receiving y is to output the
“most likely answer”; so, the probability of Success is at most βy1 . We now generalize this
principle to the case where Bob may base his decision on a transcript. We have

Pr[Success | Y = y] 6
∑
z̃∈Zy

Pr[Success ∧ gB(Y, π(X,Y )) = z̃ | Y = y]

6
∑
z̃∈Zy

Pr[gA(X) = z̃ | Y = y]

=
∑
z̃∈Zy

β(z̃|y) 6
ty∑
i=1

βy,i,

where the last inequality holds because 〈βy,i : i = 1, 2, . . . , ty〉 are the top ty values of β(z|y).
Thus,

Pr[Success] 6 E
Y

[
tY∑
i=1

βY,i

]
(12)

6 E
Y

( tY∑
i=1

βqY,i

)1/q

t
1−1/q
Y

 (by Hölder’s inequality)

6

(
E
Y

[
tY∑
i=1

βqY,i

])1/q

· t1−1/q
Y (by Jensen’s inequality) (13)

6

(∑
z

E
Y

[β(z|Y )q]
)1/q

· t1−1/q. (14)

J
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4.1 Hypercontractivity
For functions α : X → R and β : Y → R, let

‖α‖p = E
X

[|α(X)|p]1/p ;

‖β‖q = E
Y

[|β(Y )|q]1/q .

For z ∈ Z, let 1z be the indicator random variable 1[gA(X) = z] and βz : Y → R be defined
by βz(y) = β(z|y) = E[1x(X) | Y = y]. Then,(

E
Y

[β(z|Y )q]
)1/q

= ‖βz‖q = ‖E[1z(X) | Y ]‖q.

Using this, we may rearrange inequality (11) and obtain

t > Pr[Success]q/(q−1)

[∑
z

‖E[1z(X) | Y ]‖qq

]−1/(q−1)

. (15)

Now assume that we have a pair (p, q), 1 6 p < q, such that for all functions f : X → R,

E[f(X) | Y ]‖q 6 ‖f‖p. (16)

Later we will choose an appropriate pair (p, q) depending on the channel. Using (16) with
the function 1z, we obtain

t > Pr[Success]q/(q−1)

[∑
z

‖1z‖qp

]−1/(q−1)

= Pr[Success]q/(q−1)

[∑
z

Pr[gA(X) = z]q/p
]−1/(q−1)

> Pr[Success]q/(q−1)

[∑
z

Pr[gA(X) = z] Pr[gA(X) = z](q−p)/p
]−1/(q−1)

> Pr[Success]q/(q−1)

[
2−k(q−p)/p

∑
z

Pr[gA(X) = z]
]−1/(q−1)

(since H∞[gA(X)] > k)

> Pr[Success]q/(q−1)
[
2k(q−p)/p]

]1/(q−1)
.

The above argument was general, and applicable for any channel where we can find an
appropriate pair (p, q) so that (16) holds. We now specialize the argument to BSC(N, ε) and
BEC(N, ε).

Binary symmetric channel. In this case, we set q = 1 + δ and p = 1 + (1− 2ε)2δ [19, Chap.
16]. Then,

t > Pr[Success](1+δ)/δ · 24ε(1−ε)k/(1+(1−2ε)2δ). (17)

Binary erasure channel. In this case, for q = 1 + δ, we can take p = 1 + (1− ε)δ [18], and
deduce

t > Pr[Success](1+δ)/δ · 2εk/(1+(1−ε)δ) . (18)
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4.2 The trade-off
Let us fix the success probability at η = 2−γk and try to choose δ above so that we obtain
the best lower bound on t from (17) and (18).

Binary symmetric channel. Plugging in Pr[Success] = 2−γk into (17), we conclude that

t > 2r
BSC(N,ε)
γ (δ)k,

where

rBSC(N,ε)
γ (δ) := C

1 + (1− C)δ −
γ

δ
− γ,

and C = 4ε(1− ε). We need to choose δ so that rγ(δ) is maximum. Setting the derivative to
zero gives us the optimum choice δ∗γ for which

rBSC(N,ε)
γ (δ∗γ) = C(1− γ)− 2

√
C(1− C)γ .

This justifies our lower bound (9) for BSC(N, ε).
Note that at γ = 0 (success probability constant), this quantity is 4ε(1 − ε). As γ

increases, rγ(δ∗γ) decreases monotonically, and becomes 0 when γ = ε/(1− ε), at which point
we may only conclude that t > 1 (which is consistent with the results of Bogdanov and
Mossel [5] for zero communication).

Erasure channel. The calculations are identical. We obtain

t > 2r
BEC(N,ε)
γ (δ)k,

where

rBEC(N,ε)
γ (δ) := ε

1 + (1− ε)δ −
γ

δ
− γ.

Fixing γ, we find the optimum value δ∗γ for δ, such that

rBEC(N,ε)
γ (δ∗γ) = ε(1− γ)− 2

√
ε(1− ε)γ.

This justifies our lower bound (10) for BEC(N, ε). When γ = (1−
√

1− ε)/(1 +
√

1− ε), we
obtain rBEC(N,ε)

γ (δ∗γ) = 0; in the next section we will show that there is indeed a zero commu-
nication protocol of BEC(N, ε) that succeeds with probability close to 2−(1−

√
1−ε)k/(1+

√
1−ε).

5 Communication protocols

Our protocols are similar to the protocol of Bogdanov and Mossel [5]. We first recall their
protocol. Let Z = {0, 1}k. Alice and Bob use an affine subspace of Fn2 (where F2 = {0, 1} is
the field with two elements) with 2k vectors v = (vz : z ∈ {0, 1}k). We will assume that this
subspace is constructed at random, by the following process: pick k linearly independent
vectors w1, w2, . . . , wk uniformly at random and another random vector w0 ∈ {0, 1}N ; then
set

vz = w0 +
k∑
i=1

ziwi.
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6:12 Tight Bounds for Communication-Assisted Agreement Distillation

Note, in particular, that if z, z′ ∈ {0, 1}k and z 6= z′, then (vz, vz′) ranges uniformly over
{0, 1}N × {0, 1}N .

On receiving X ∈ {0, 1}n, Alice’s output gA(X) will be the z ∈ Z for which vz is closest
to X. To break ties, the following rule is used. Fix a total ordering � on {0, 1}N such that
if the Hamming weight of x is less than the Hamming weight of x′, then x � x′. Then,
gA(x) = z for which x+ vz is the smallest with respect to �. For this function, Bogdanov
and Mossel [5] show the following.

I Lemma 5.1. For all z ∈ {0, 1}k, we have PrX [f(X) = z] = 2−k.

In the original protocol of Bogdanov and Mossel, Bob uses the same function as Alice to
produce his output. We extend the above protocol, allowing Alice to send a short message
to Bob. Fix a function χ : Z → {0, 1}ck such that |χ−1(α)| = 2(1−c)k for all α ∈ {0, 1}ck.
Alice’s message to Bob is then m = χ(gA(X)). On receiving the message m, Bob’s output is
z ∈ χ−1(m) for which vz agrees most with Y (breaking ties arbitrarily).

It will be convenient to state our proofs using {+1,−1} instead of {0, 1}; so we assume
that the vectors vz and the random string X take values in {+1,−1}N ⊆ RN . If the channel
is BSC(ε), then we will assume that Y ∈ {+1,−1}N ; if the channel is BEC(ε), then we will
assume that Y ∈ {+1,−1, 0}N , where 0 corresponds to erasures. Also, we will assume that
ε 6= 0, for Alice and Bob have identical strings and they can just out the first k bits.

5.1 Agreement distillation protocol for BSC(ε)
We fix γ > 0, and describe a protocol with low communication that achieves success
probability 2−γk−o(k). We will do the computation assuming that the affine space of vectors
v is chosen at random. The overall success probability then is averaged over the random
choices of the affine subspace. Clearly, there is a choice of an affine subspace where the
success probability is at least this average.

Fix z ∈ Z. Note that the quantity X · vz =
∑
iX[i]vz[i] is then a sum of N independent

random variables taking values in {+1,−1}, such that E[X · vz] = 0 and var[X · vz] = N . To
estimate the probabilities, we will assume that N is large and use the normal approximation.
Let

ϕ(r) = 1√
2π

exp
(
−r

2

2

)
;

Φc(r) =
∫ ∞
r

ϕ(x)dx.

I Theorem 5.2 (Berry-Esseen theorem [12, Sec. XVI.5, Theorem 2]). Let S = ξ1 +ξ2 + · · ·+ξN ,
where the ξi are independent random variables. Suppose µi = E[ξi], σ2

i = var[ξi] and
τi = E[|ξi − µi|3]. Let µ = E[S] =

∑
i µi and σ2 = var[S] =

∑
i σ

2
i and τ =

∑
i τi. Then,

|Pr[S > µ+ rσ]− Φc(r)| 6 6τ
σ3 . (19)

In all our applications σ2 = Θ(N) (the constant depends on ε) and τ 6 N ; thus, the right
hand side is O(1/

√
N), where the implicit constant depends only on ε and is positive if

ε ∈ (0, 1) is positive. In particular, using standard estimates for Φc(r) (see, for example, [8]),
we conclude that for all r > 0 and all large enough N

r2

r2 + 1ϕ(r) < Pr[S > µ+ rσ] < ϕ(r) (20)
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Thus, for all large N , one has

ϕ(r)
(
1−O(r−2)

)
< Pr[X · vz > r

√
N ] < ϕ(r) .

Note the following behavior of ϕ when its argument is scaled:

ϕ(αr) = 1
α(
√

2πr)1−α2 ϕ(r)α
2
. (21)

Let

η = 2ε−
√

4ε(1− ε)γ.

For z ∈ {0, 1}k, let

Az :=
{
x ∈ {+1,−1}n : vz · x > r

√
N
}

;

Bz :=
{
x ∈ {+1,−1}n : vz · x > (1− η)r

√
N
}
.

Fix r = Θ(
√
k), such that for all large enough N

2−(k+1) 6 µ(Az) 6 2−(k+1) (1 +O(1/k)) . (22)

Consider the following events for z ∈ {0, 1}k.

E1(z) := (X,Y ) ∈ Az ×Bz;
E2(z) := ∀z′ 6= z : X 6∈ Az′ ;
E3(z) := ∀z′ 6= z (χ(z) = χ(z′)) : Y 6∈ Bz′ .

E1(z) and E2(z) ensure that Alice outputs z; E1(z) and E3(z) ensure that Bob outputs z;
thus, if all three events hold, then Alice and Bob both output the string z. Thus,

Pr[Success] >
∑
z

Pr[E1(z)]
(

1− Pr[E2(z) | E1(z)]− Pr[E3(z) | E1(z)]
)
. (23)

We will estimate the probabilities appearing on the right separately. First, we have

Pr[E1(z)] = Pr[X ∈ Az] · Pr[Y ∈ Bz | X ∈ Az]. (24)

For our choice of r (see (22)), Pr[X ∈ Az] > 2−(k+1). To compute the second factor, fix
v (the affine space of 2k vectors) and x ∈ Az; say x · vz = r′

√
N for some r′ > r. Now,

Y · vz is the sum of N independent random variables taking values in {+1,−1}, such that
E[Y · vz] = (1− 2ε)r′

√
N and var[Y · vz] = 4ε(1− ε)N . Thus,

Pr[Y · vz > (1− η)r
√
N | X = x] > ϕ

(
(1− η)r − (1− 2ε)r′√

4ε(1− ε)

)
(1−O(1/k))

> ϕ

(
(1− η)r − (1− 2ε)r√

4ε(1− ε)

)
(1−O(1/k))

(since ϕ(r) is decreasing)

= ϕ

(
(2ε− η)r√
4ε(1− ε)

)
(1−O(1/k))

= ϕ (√γr) (1−O(1/k))

>
1

√
γ(
√

2πr)1−γ
2−γ(k+1)(1−O(1/k)). (25)

CCC 2016
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Using these in (24), we obtain

Pr[E1(z)] = Pr[X ∈ Az] · Pr[Y ∈ Bz | X ∈ Az]

>
1

√
γ(
√

2πr)1−γ
2−(γ+1)(k+1)(1−O(1/k)). (26)

Recall that if z 6= z′, then as v varies, vz and vz′ vary uniformly over all pairs of distinct
vectors in {+1,−1}N . It follows that

Pr[E2(z) | E1(z)] 6
∑

z′:z′ 6=z
Pr[0N ∈ Az′ ]

6 (2k − 1) · 2−(k+1)(1 +O(k−1))

6
1
2(1 +O(k−1)). (27)

Similarly, we have

Pr[E3(z) | E1(z)] 6
∑

z′:χ(z)=χ(z′),z′ 6=z

Pr[Y ∈ Bz′ ]

6 2(1−c)kϕ((1− η)r)

6 2(1−c)k 1
(1− η)(

√
2πr)η(2−η)

2−(1−η)2(k+1). (see (21) above) (28)

Thus, if c > 1− (1− η)2 = C(1− γ)− 2
√
C(1− C)γ where C = 4ε(1− ε), then this quantity

is at most 1
4 (say) for all large k. It follows from (23), (26), (27) and (28) that

Pr
v,X,Y

[Success] >
∑
z

1
√
γ(
√

2πr)1−γ
2−(γ+1)(k+1)

(
1− 1

2 −
1
4

)
(1−O(k−1))

= 2−γk−O(log γk)

= 2−γk(1+o(1)).

Thus, there exists a choice of the subspace v such that Alice and Bob succeed with probability
at least 2−γk(1+o(1)).

Constant probability of success. The above argument, was carried out with γ > 0 a
constant, so that it yielded agreement with probability 2−γk(1+o(1)). We may, in fact,
set γ = 1/r2 = Θ(1/k) in the above argument, and conclude that with communication
ck ≈ (C(1− γ)− 2

√
C(1− C)γ)k = 4ε(1− ε)k−Θ(

√
k), we obtain Prv,X,Y [Success] = Ω(1).

5.2 Agreement distillation protocol for BEC(ε)
The calculations are similar to the one we used above. We fix r and Az as before. However,
this time we set η = ε−

√
ε(1− ε)γ and let

Bz :=
{
x ∈ {+1,−1}n : vz · x > (1− η)r

√
N
}
.

We define events E1(z), E2(z) and E3(z) as before, and observe that

Pr[Success] >
∑
z

Pr[E1(z)](1− Pr[E2(z) | E1(z)]− Pr[E3(z) | E1(z)]). (29)
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continues to hold. To estimate the first factor, we expand it as before and obtain

Pr[E1(z)] = Pr[X ∈ Az] · Pr[Y ∈ Bz | X ∈ Az].

Pr[X ∈ Az] > 2−(k+1). As before, for each fixed x ∈ Az (such that x · vz = r′
√
N , r′ > r),

we view Y · vz as a sum of N independent random variables, each taking values in either
{0,+1} or {0,−1}; in particular, E[Y · vz] = (1− ε)r′

√
N and var[Y · vz] = ε(1− ε)N . Thus,

Pr[Y · vz > (1− η)r | X = x] > ϕ

(
(1− η)r − (1− ε)r′√

ε(1− ε)

)
(1−O(k−1))

>
1

√
γ(
√

2πr)1−γ
2−γ(k+1)(1−O(k−1)).

using calculations identical to those leading to (25). We finally have the following lower
bound for the first factor of (29).

Pr[E1(z)] = Pr[X ∈ Az] · Pr[Y ∈ Bz | X ∈ Az]

>
1

√
γ(
√

2πr)1−γ
2−(γ+1)(k+1)(1−O(k−1)). (30)

Calculations that lead to

Pr[E2(z) | E1(z)] 6 1
2(1 +O(k−1)) (31)

remain the same.
Finally, we consider E3(z). First, we observe that since N is large, we may assume that

with probability tending to 1, the number of ones in Y is (1− ε)N ±N3/4 (say), even when
conditioning on E1. Now, the pair (vz, vz′) is uniformly distributed over all possible pairs of
distinct vectors. So, we will fix vz, and assume that vz′ is uniformly distributed in {+1,−1}N
(that it cannot be vz can be overlooked). Fix y with say ` = (ε + N−1/4)N = ε′N zeroes.
Then, Y · vz′ is the sum of (1 − ε′)N independent random variables, each taking values
uniformly in {+1,−1}. In particular, E[Y · vz′ ] = 0 and var[Y · vz′ ] = (1− ε′)N . Then,

Pr[E3(z) | E1(z)] 6
∑

z′:χ(z)=χ(z′),z′ 6=z

Pr[Y ∈ Bz′ ]

6 2(1−c)kϕ

(
(1− η)√

1− ε′
r

)(
1 +O(k−1)

)
6 2(1−c)k 1

(1− η)(
√

2πr)1− (1−η)2
(1−ε′)

2−
(1−η)2(k+1)

(1−ε′)
(
1 +O(k−1)

)
, (32)

where in the last step we used (21). Thus, if c > 1−(1−η)2/(1−ε′) = ε(1−γ)−2
√
ε(1− ε)γ,

then this quantity is at most 1
4 (say) for all large k. It follows from (29), (30), (31) and (32)

that

Pr
v,X,Y

[Success] >
∑
z

1
√
γ(
√

2πr)1−γ
2−(γ+1)(k+1)

(
1− 1

2 −
1
4

)
(1−O(k−1))

= 2−γk−O(log γk).

We may, as before, fix a choice of v such that Alice and Bob succeed with probability at
least 2−γk(1+o(1)).
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Constant probability of success. Again, we may set γ = 1/r2 = Θ(1/k) in the above
argument, and conclude that with communication εk−Θ(

√
k), we obtain Prv,X,Y [Success] =

Ω(1).

6 Open problems

Our work raises a number of intriguing open questions, such as:
Is there a protocol for general channels whose communication, for agreeing on a k-bit
random string with constant probability, approaches s∗(Y ;X)k? Here s∗(Y ;X) is the
channel parameter defined in (1).
We considered protocols where the shared random string was a function gA(X) of Alice’s
input X. What can we achieved by a general multi-round communication protocol, where
the shared random string can depend on both X and Y ? Can we do better than the
lower bounds we established, or do the lower bounds continue to hold in this (seemingly)
more powerful model?
The setup for BEC(ε) is not symmetric between Alice and Bob. What can be done if
Alice and Bob switch roles, and the shared randomness should be a function of Y ? What
are the possible trade-offs in the symmetric setup where X and Y are the independent
outputs of BEC(ε) on a common random string Z ∈ {0, 1}N?
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