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Abstract
There are two known ways to unfold a convex polyhedron without overlap: the star unfolding
and the source unfolding, both of which use shortest paths from vertices to a source point on the
surface of the polyhedron. Non-overlap of the source unfolding is straightforward; non-overlap
of the star unfolding was proved by Aronov and O’Rourke in 1992. Our first contribution is a
much simpler proof of non-overlap of the star unfolding.

Both the source and star unfolding can be generalized to use a simple geodesic curve instead of
a source point. The star unfolding from a geodesic curve cuts the geodesic curve and a shortest
path from each vertex to the geodesic curve. Demaine and Lubiw conjectured that the star
unfolding from a geodesic curve does not overlap. We prove a special case of the conjecture. Our
special case includes the previously known case of unfolding from a geodesic loop. For the general
case we prove that the star unfolding from a geodesic curve can be separated into at most two
non-overlapping pieces.
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1 Introduction

An unfolding of a polyhedron P is obtained by cutting the surface of P in such a way that it
can be flattened into the plane, forming a single polygon. A main goal is to find unfoldings
that are simple, that is, do not self-overlap. If we have an unfolding that does not overlap,
we can make a model of the polyhedron from a sheet of paper by cutting the outline of the
polygon and gluing appropriate pairs of edges together.

Unfoldings have fascinated people since the time of Dürer’s beautiful examples [6]. A
long-standing open question is whether every convex polyhedron has a non-overlapping edge
unfolding, where only edges of the polyhedron are cut. However, if we allow cuts that cross
faces—which is the model used in this paper—then there are several known methods to
unfold convex polyhedra without overlap.

Unfoldings of polyhedra have applications in product manufacturing, for constructing
a 3-dimensional object from a sheet of metal or plastic, and also in graphics for applying
texture mapping, where 2-dimensional image coordinates must be assigned to points on a
3-dimensional model. Unfolding is also applied as a theoretical tool for the study of shortest
paths on the surface of a polyhedron.

There are two main methods known to unfold convex polyhedra without overlap, both
defined in terms of shortest paths on the polyhedron surface to a “source” point x. A
fundamental property of shortest paths on the surface of a convex polyhedron is that they
unfold to straight-line segments. More generally, any geodesic (or locally shortest) path on
the surface of a polyhedron unfolds to a straight-line segment.
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Figure 1 An example star unfolding from a geodesic curve (in red) on a rectangular box. Faint
dashed lines inside the unfolding indicate some of the original edges.

The star unfolding is obtained by cutting a shortest path from every vertex of the
polyhedron to the point x. The cuts form a star at x, hence the name. The source unfolding
is obtained by cutting the ridge tree (also known as the cut locus), the locus of points that
have more than one shortest path to x. It is easy to see that the source unfolding does not
overlap, because all the shortest paths from x to points on the surface unfold into straight
lines radiating from x. The star and source unfoldings are dual in the sense that the pieces
of the surface delimited by the ridge tree and the vertex-to-source shortest path cuts are
joined at “opposite ends”: in the star unfolding the pieces are joined at the ridge tree; and
in the source unfolding the pieces are joined at the source point x.

Alexandrov thought the star unfolding might overlap (see [5]); the surprising result that
it does not was proved by Aronov and O’Rourke [2]. Their proof is by induction and involves
combining two vertices into one in a kind of “Alexandrov surgery.” The proof is long, and
Demaine and O’Rourke, in their book, “Geometric Folding Algorithms” [5] call the proof
“not straightforward” and omit it.

Our first main result is a new proof of non-overlap of the star unfolding that is more
straightforward. We do not modify the polyhedron or appeal to Alexandrov’s gluing theorem.

The star and source unfoldings can be generalized in a natural way by using a simple
geodesic curve λ instead of a source point x. For the source unfolding, we cut the ridge
tree (the locus of points that have more than one shortest path to the curve λ), and for
the star unfolding we cut the curve λ itself and a shortest path from every vertex of the
polyhedron to λ. See Figure 1. Such generalizations were first introduced by Itoh et al. [9]
who proved non-overlap results for the case of closed curves (see also [11, 8]). Demaine and
Lubiw [4, Lemma 1] proved non-overlap of the source unfolding for (open) geodesic curves,
and conjectured the same for the star unfolding.

Our second main result is a special case of this conjecture: we prove that the star
unfolding from a geodesic curve unfolds without overlap if the curve is “balanced” (as defined
in Section 3). The balance condition automatically holds for the point star unfolding.

We give two implications of our second result. The first is that the star unfolding does
not overlap if the curve is a geodesic loop, meaning the curve endpoints a and b are (almost)
coincident. In the limit when a = b the unfolding consists of two pieces joined at a point.
This gives an alternative to the result of Itoh et al. [9] that the star unfoldings of the inside
and the outside of a geodesic loop do not overlap, and that the two pieces may be joined
into one non-overlapping piece. Their proof that the outside unfolds without overlap had a
flaw; our result repairs it. We can extend this result (and our other results) from geodesics
to quasigeodesics, to be defined below.

The second consequence of our result is that every star unfolding from a geodesic curve
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Figure 2 The star unfolding from a point. (a) The polyhedron, the source point, and the shortest
paths from vertices to the source point. (b) The corresponding star unfolding. The ridge tree is
shown in grey. The kites are shown with dashed lines. The kite on ridge tree edge e is shaded, and
its source angle α(e) is indicated. Note that the unfolding shows the inside surface of the polyhedron.

can be cut into two pieces such that each piece is non-overlapping. The extra cuts consist of
shortest paths from a point on the ridge tree to the curve.

To conclude this section we mention a few reasons to explore new unfoldings of convex
polyhedra. One is to find “nicer” unfoldings. As the number of vertices of a polyhedron
increases, the star unfolding from a point becomes very spiky with many sharp angles, for
example see [1, Figure 7]. By contrast, in the star unfolding from a geodesic curve many (or
in some cases, all) vertices may have shortest paths to interior points of the curve, resulting
in many 90◦ angles and fewer sharp angles. New unfolding methods for convex polyhedra
might also shed light on the case of non-convex polyhedra. Having a larger repertoire of
unfoldings also opens the door to optimization, e.g., minimize the area of a bounding box of
the unfolding, or minimize the total cut length, or maximize the minimum angle.

Geodesic star unfoldings may also have implications for the conjecture [3] that every
convex polyhedron has a general zipper unfolding, a non-overlapping unfolding formed by
cutting a single path on the polyhedron surface. If quasigeodesic star unfoldings do not
overlap, then it would suffice to find a quasigeodesic curve that goes through all the vertices.

1.1 Preliminaries and Definitions

I Definition 1. Let P be a convex polyhedron, and let x be a point on P . The star unfolding,
Sx, is a 2-dimensional polygon formed by cutting P along a shortest path from every vertex
of P to x, and flattening the result into the plane. See Figure 2. Note that there is a choice
of cuts if a vertex has more than one shortest path to x.

If P has n vertices, then the polygon Sx will have 2n vertices in general, and 2(n− 1)
vertices if x is located at a vertex of P. The vertices of Sx alternate around the boundary
between vertex images, denoted vi, that correspond to the vertices of P, and n ‘copies’ of x,
called source images and denoted by xi. See Figure 2.
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The edges of Sx correspond to the shortest path cuts made from each vertex to x.
Therefore, the two edges incident to any vertex image vi are always the same length.

The ridge tree (or “cut locus”), Tx, is the closure of the set of all points on the surface
of P that have more than one shortest path to x. It is known that the ridge tree is in fact
a tree [12], and that its edges are shortest paths [1] and thus correspond to straight-line
segments in Sx. See Figure 2(b). As a corollary to their proof of non-overlap [2, Theorem
10.2], Aronov and O’Rourke proved that the ridge tree is a subset of the Voronoi diagram of
the images of x.

Readers interested only in the point case may proceed directly to Section 2. In the
remainder of this section we give definitions for the star unfolding from a geodesic curve.

Given a polyhedron P, a geodesic curve λ on P is a curve on the surface of P, such that
at every interior point p of λ, the surface angle to either side of p is exactly π. If the surface
angle to either side of p is at most π then the curve is called a quasigeodesic. We will only
consider [quasi]geodesic curves that are simple, meaning there is no point of self-intersection
between any two interior (i.e., non-endpoint) points of the curve.

I Definition 2. Let P be a convex polyhedron, and let λ be a simple geodesic curve on the
surface of P. The geodesic star unfolding Sλ is a 2-dimensional polygon formed by cutting
λ, and cutting a shortest path along the surface of P from every vertex vi of P to λ, and
flattening the result into the plane. See Figure 5.

The endpoints of λ are labelled a and b and the two sides of λ are labelled s and t, with
the convention that the clockwise order around λ on the outside surface of P is a, s, b, t. We
distinguish shortest paths to λ that arrive at (or “report to”) a or b, and shortest paths that
arrive at interior points of λ on side s or t. Any shortest path that arrives at an interior
point of λ forms a right angle with λ, as shown by the following lemma, adapted from Ieiri
et al. [7, Corollary 1].

I Lemma 3. Let λ be a geodesic curve on a convex polyhedron P, with points x0 on λ and
x not on λ such that xx0 is a shortest path from x to λ. The angles formed between xx0 and
λ are at least π

2 to each side.

In the unfolding Sλ, a source image is either a copy of an endpoint (a or b), called a
point image, or a sub-segment of λ corresponding to side s or t, called a segment image.
(Note that a segment image might include one of the endpoints of λ.) Around a clockwise
traversal of the boundary of Sλ we encounter source images in order a, s, b, t—this is because
our convention is to draw the inside of the polyhedron’s surface facing up. Each consecutive
pair of source images is separated by two edges (of equal length) joined at a vertex image,
such that the edges correspond to the shortest path cut at the vertex.

The ridge tree of a geodesic λ, denoted Tλ, is the closure of the set of all points on the
surface of P that have more than one shortest path to λ. That the ridge tree is an actual
tree was established by Demaine and Lubiw [4, Lemma 4]. (In fact, their lemma applies to
the outside of any closed convex curve on the surface of P—in the present situation, the
closed convex curve is the set of points at some fixed distance ε from λ.) See Figure 5.

A key difference from the point case is that the edges of the geodesic ridge tree are not
necessarily straight-line segments. Every edge of the ridge tree is the locus of points that are
equidistant from two source images. Thus, when the two sources to either side of an edge
are a point image and a segment image respectively, a parabolic ridge tree edge will result.
The ridge tree edges between pairs of point images or pairs of segment images will still be
straight.

SoCG’15
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2 New Proof for the Point Star Unfolding

In this section we give a new proof of non-overlap for the point star unfolding that is much
simpler than the original proof of Aronov and O’Rourke [2].

The most important idea of our proof is to partition the star unfolding into pairs of
congruent triangles. Each vertex of the ridge tree has three or more shortest paths to x on
the surface of P . Add all these shortest paths as line segments in the star unfolding. Notice
that each edge of the ridge tree will now have a triangle to each side. Because all shortest
paths from a ridge tree vertex to the nearest source image have the same length, the two
triangles to either side of a ridge tree edge have corresponding sides of equal length, and
therefore are congruent. We call each such pair of triangles a kite. The kite associated with
ridge tree edge e is denoted kite(e). The two images of x to each side of e are called the
apices of the kite. Observe that the kites form a partition of Sx. See Figure 2(b).

We define the source angle of e, α(e), to be the interior angle at either apex of kite(e).
See Figure 2(b). We extend this definition to paths: For a path σ of ridge tree edges, where
σ = e0, . . . , et, the source angle of σ is α(σ) =

∑t
i=0 α(ei). Observe that α(σ) ≤ π because

2α(σ) measures the total source angle at both apices of every kite on the path, so this is
bounded by the total surface angle at the source point x, which is bounded by 2π.

I Theorem 4 (Theorem 9.1 in [2]). The star unfolding Sx does not overlap.

Proof. We will show that no two kites overlap. Consider two kites, and the path in the
ridge tree between them. Let e1, . . . , et be the edges of the path in the ridge tree, and let
ki = kite(ei). We will show that k1 and kt have disjoint interiors. We will define a sequence
of regions W1, . . . ,Wt−1, called W-wedges, so that Wi includes k1, . . . , ki and excludes ki+1.
Then Wt−1 includes k1 and excludes kt, which will complete the proof.

The boundary of the W-wedge Wi is shaped like a ‘W’ and defined as follows. The center
point of Wi is the point pi, where ei and ei+1 intersect; the inner legs are the edges of ki that
are incident to pi; and the outer legs form an angle with the inner legs (on the side of ki) of
π
2 + αi, where αi =

∑i
j=1 α(ej). The outer legs extend either to their point of intersection,

or as infinite rays if they do not intersect. This boundary divides the plane into two regions
and we define Wi to be the region containing ki in a neighbourhood of pi. See Figure 3.
Note that αi is in the range [0, π] as observed above.

We will prove by induction that ki is outside Wi−1 and that Wi contains ki ∪Wi−1. At
each step, including the base case, we will need the following:

I Lemma 5. Let p be an endpoint of ridge tree edge e, and let W be a W-wedge centered at
p such that the inner legs of W are the edges of kite(e), and the outer legs are rotated out
(on the side of kite(e)) by an angle in the range [π2 + α(e), 3π

2 ]. Then kite(e) ⊆W .

Proof. Consider the two circular sectors centered at the endpoints p and q of e and bounded
by the two incident kite edges as radii (see for example the circular sector marked a centered
at q = p0 on kite k1 in Figure 3). At each apex of kite(e) the two angles between the outer
leg of W and the two sides of kite(e) are at least π

2 . Thus the circular sector at q is inside
W , and the circular sector at p is outside W . This implies that kite(e) ⊆W . J

We are now ready to prove by induction that ki is outside Wi−1 and that Wi contains
ki ∪Wi−1. For the base case i = 1, there is no W0, and W1 contains k1 by the lemma above.
Suppose by induction that Wi−1 contains ki−1 ∪Wi−2. We will show how to transform Wi−1
into Wi in a way that makes it clear that ki is outside Wi−1 and Wi contains ki ∪Wi−1.
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Figure 3 Kite ki−1 (shaded) and the corresponding W-wedge Wi−1 (lightly shaded). W1 contains
kite k1 because it contains the circular sector a. To prove by induction that Wi contains all previous
kites, we expand Wi−1, first rotating the legs about pi−1 to the W-wedge W ′i (dashed line), and
then moving the center point to pi to obtain Wi. Note that although the figure shows kites ki−1

and ki sharing only a vertex, in non-degenerate situations ridge tree vertices have degree 3, and two
consecutive kites will share an edge as well.

Note that the unfolding does not overlap in the neighbourhood of point pi—this is true
whether pi is a point with 2π surface area, or a vertex, which will be incident to a single
cut. Thus the kites ki and ki−1, which are both incident to pi, do not overlap. Rotate the
two inner legs of Wi−1 about point pi−1, away from ki−1 to the edges of ki. Keep the angle
between inner and outer legs fixed throughout the rotation. Observe that all the kite edges
incident to pi−1 have the same length, so we really perform a rigid transformation on each
half of the W. Call the resulting W-wedge W ′i (shown as a dashed poly-line in Figure 3).
Notice that W ′i contains Wi−1, because the angle αi−1 + π

2 is in the range [π2 ,
3π
2 ] so the outer

legs remain outside the rotation sector of the inner legs. (Here it is crucial that we added the
extra π

2 to the initial angle.) That ki is outside W ′i follows from applying Lemma 5 to the
outside of W ′i , noting that αi−1 + α(ei) ≤ π so the angle αi−1 + π

2 is actually in the range
[π2 ,

3π
2 − α(ei)] and therefore the complementary angle is in the range [α(ei) + π

2 ,
3π
2 ].

The second step of the transformation is to move the center point of W ′i from pi−1 to pi,
while keeping the outer legs fixed. The W-wedge increases until it contains ki. The angle
between inner and outer legs increases by α(ei), to αi. Thus the result is precisely Wi, and
therefore Wi contains ki ∪Wi−1. J

Our proof, like Aronov and O’Rourke’s, shows a stronger result that certain regions
outside the star unfolding are empty. Aronov and O’Rourke [2] showed that at any vertex vi
adjacent to source images xi and xi+1 in the unfolding, no part of the unfolding enters the
circular sector centered at vi exterior to the unfolding near vi and bounded by the radii vixi
and vixi+1. See Figure 4. Our proof shows that larger regions are empty:

I Lemma 6. Let vi be a vertex adjacent to source images xi and xi+1 in a star unfolding Sx,
and let W be the region bounded by vixi, vixi+1, and the rays extending from xi and xi+1 at
right angles from these segments on the exterior side of vi. Then no part of the unfolding
intersects the interior of W .

SoCG’15
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Figure 4 Old sectors of emptiness (light grey) established by Aronov and O’Rourke and new
empty regions (light grey+dark grey) established by Lemma 6.

Proof outline. In non-degenerate situations, vi is a leaf of the ridge tree, incident to ridge
tree edge e, say. We apply the argument in the proof above to the ridge tree path from e to
any other edge. The initial W-wedge always contains W , so no other kite enters W . More
generally, vi may be an internal vertex of the ridge tree and we repeat the argument for
every path in the ridge tree starting at vi, taking the intersection of the initial wedges in the
path argument to show that W is empty. J

3 Geodesic Star Unfolding

In this section we will consider the star unfolding from a geodesic curve λ. By generalizing
the proof for the point case, we will establish some situations in which the geodesic star
unfolding does not overlap. See Figure 5.

As for the point-source case, we will partition the unfolding by adding, for every ridge
tree vertex p, the line segments that correspond to shortest paths from p to the curve. We
include as a vertex of the ridge tree any point of the ridge tree that has a shortest path
to an endpoint of λ appearing in a segment image. The added line segments partition the
unfolding into regions called wings. See Figure 5(b). The two wings on either side of a ridge
tree edge form a wing-pair. A wing with an endpoint source image is a point wing and a
wing with a segment source image is a segment wing. A wing-pair may involve two point
wings (these are the kites of the previous section), or two segments wings, or one of each,
in which case we call it a hybrid wing-pair. The ridge tree edge of a hybrid wing-pair is a
parabolic segment; all others are straight-line segments.

The source angle of a point wing is the angle at its source image point; the source angle
of a segment wing is 0. The source angle of a wing-pair is the sum of the source angles
of the two wings. If e is an edge of the ridge tree, and A designates one side of this edge,
then αA(e) denotes the source angle of the wing on that side. If σ is a path in the ridge
tree, with its two sides (arbitrarily) labelled A and B, then the source angle of σ on side
A is αA(σ) =

∑t
i=0 α

A(ei) (and similarly for B). The path σ is balanced if αA(σ) ≤ π and
αB(σ) ≤ π. We say that the ridge tree [or the geodesic curve] is balanced if every path in the
ridge tree is balanced. There are examples where the ridge tree is not balanced, and in fact
it is possible to have all 2π of source angle to one side of a ridge tree path, see [10].

Our main result in this section is that wing-pairs along a balanced path do not overlap.

I Lemma 7. Let P be a convex polyhedron with a geodesic curve λ on its surface. Suppose
that u and v are distinct edges of the ridge tree such that the path in the ridge tree from u to
v is balanced. Then the wing-pairs of u and v do not overlap.
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Figure 5 The star unfolding from a geodesic curve. (a) The polyhedron, the geodesic curve
with endpoints a and b and sides s and t, and shortest paths from vertices to the curve. (b) The
corresponding star unfolding with the source images, a, b, s or t, indicated. Images of a [b] are drawn
as squares [triangles]; segment images of s [t] are drawn as heavy dashed [dotted] lines. Shortest
path cuts are coloured according to their destination type. Wings are indicated by dashed lines.
Three wing-pairs are shaded; the darkly shaded one is a hybrid wing-pair with a parabolic ridge tree
edge. Note that the unfolding shows the inside surface of the polyhedron.

Before proceeding with the proof, we note the consequence that the star unfolding from a
balanced geodesic curve does not overlap:

I Corollary 8. If P is a convex polyhedron with a balanced geodesic curve λ then the geodesic
star unfolding from λ does not overlap.

Proof of Lemma. We follow the same plan as in the proof of Theorem 4, that is, we will
prove that no two wing-pairs in the unfolding overlap, by examining W-wedges along the
ridge tree path between the two wing-pairs. A quick summary is that there are only two
differences in the argument: (1) as we move from W-wedge Wi−1 to Wi we may increase
the angle between inner and outer legs differently on its two sides; (2) when the W-wedge
moves past a segment wing, the angle between inner and outer legs does not change, and the
inner+outer pair translates. See Figure 6. We now give the details.

Let σ be the path from u to v in the ridge tree, with edges u = e1, . . . , et = v. Let wi be
the wing-pair of edge ei. Label the two sides of σ by A and B. Let αAi =

∑i
j=1 α

A(ej) and
let αBi =

∑i
j=1 α

B(ej). Note that αAi and αBi are in the range [0, π] by assumption.
We will show that w1 and wt have disjoint interiors by defining W-wedges Wi so that

Wi includes w1, . . . , wi and excludes wi+1. Then Wt−1 includes w1 and excludes wt, which
will complete the proof. Define Wi, for i = 1, . . . , t, to be the W-wedge with center point
at pi where ei and ei+1 intersect, with inner legs along the two incident edges of wi, and
outer legs rotated out (on the side of wi) by αAi + π

2 on side A, and by αBi + π
2 on side B.

The outer legs extend either to their point of intersection, or as infinite rays if they do not
intersect. This boundary divides the plane into two regions and we define Wi to be the
region containing wi. See Figure 6.

SoCG’15
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Figure 6 Wing-pair wi (shaded) is a hybrid wing-pair. W1 contains w1 because it contains the
circular sector a. To prove by induction that Wi contains all previous wing-pairs, we expand Wi−1

to Wi, first rotating the legs about pi−1 to the W-wedge W ′i (dashed line), and then expanding to
include wi. Note that in this example αBi−1 = αBi since the wing to that side is a segment-wing.

We will prove by induction that wi is outside Wi−1 and that Wi contains wi ∪Wi−1. At
each step, including the base case, we will need the following:

I Lemma 9. Let p be an endpoint of ridge tree edge e, and let W be a W-wedge centered at
p such that the inner legs of W are the edges of the incident wings of e, and the outer leg on
the A side is rotated out by an angle in the range [π2 + αA(e), 3π

2 ] and the outer leg on the
B side is rotated out by an angle in the range [π2 + αB(e), 3π

2 ]. Then the wing-pair of e is
contained in W .

Proof. Consider the two circular sectors centered at the endpoints p and q of e and bounded
by the two incident wing edges as radii (see for example the circular sector marked a centered
at q = p0 on wing-pair w1 in Figure 6). On both the A side and the B side, the angles
between the outer leg of W and the sides of the wing of e are at least π

2 . Thus the circular
sector at q is inside W , and the circular sector at p is outside W . This implies that the
wing-pair of e is contained in W . J

We are now ready to prove by induction that wi is outside Wi−1 and that Wi contains
wi ∪Wi−1. For the base case i = 1, there is no W0, and W1 contains w1 by the lemma above.
Suppose by induction that Wi−1 contains wi−1 ∪Wi−2. We will show how to transform Wi−1
into Wi in a way that makes it clear that wi is outside Wi−1 and Wi contains wi ∪Wi−1.

Since there is at most 2π surface angle at any point on the surface, the unfolding does
not overlap in the neighbourhood of any point. Thus wi−1 and wi are disjoint. Rotate the
two inner legs of Wi−1 about point pi−1, away from wi−1 to the edges of wi. Keep the angle
between inner and outer legs fixed throughout the rotation. Observe that all the wing edges
incident to pi−1 have the same length, so we really perform a rigid transformation on each
half of the W. Call the resulting W-wedge W ′i (shown as a dashed poly-line in Figure 6).
Notice that W ′i contains Wi−1, because the angles αAi−1 + π

2 , and α
B
i−1 + π

2 are in the range
[π2 ,

3π
2 ] so the outer legs remain outside the rotation sector of the inner legs. We prove that

wi is outside W ′i by applying Lemma 9 to the outside of W ′i . To show that the angle on



S. Kiazyk and A. Lubiw 399

v

v9

v10

v11v13

v18

v2
v4

b

a

(a)

vl

vr
v2

v9

v10

v11v13

v18

(b)

Figure 7 The star unfolding from a quasi-geodesic curve. (a) The polyhedron and the quasi-
geodesic curve passing through vertex v. (b) The corresponding star unfolding with the two images
of v and their wing-pairs indicated.

the A side is in the required range, observe that αAi−1 + αA(ei) ≤ π so the angle αAi−1 + π
2 is

actually in the range [π2 ,
3π
2 − α

A(ei)] and therefore the complementary angle is in the range
[αA(ei) + π

2 ,
3π
2 ]. A similar argument applies on the B side.

The second step of the transformation is to moveW ′i past wi toWi. We do this separately
on the A side and the B side. To go past a point wing, we move the inner leg from pi−1 to pi,
while keeping the outer leg fixed. To go past a segment wing, we translate the inner+outer
legs so that their common point moves along the segment image; since the segment image
is perpendicular to the inner leg, each leg is parallel to its initial version. The resulting
W-wedge contains wi. On the A side, the angle between inner and outer legs increases by
αA(ei), to αAi , and similarly on the B side. Thus the result is precisely Wi, and therefore
Wi contains wi ∪Wi−1. J

3.1 Extension to Quasigeodesic Curves
We now show that our geodesic star unfolding result (Lemma 7) carries over to quasigeodesic
curves. Recall that a quasigeodesic curve on the surface of a polyhedron P is a curve such
that at each interior point along the curve the surface angle to each side is ≤ π. (The angle
can only be < π at a vertex of P.)

Consider a quasigeodesic curve λ on the surface of P. We define the quasigeodesic star
unfolding in the same way as the geodesic star unfolding, specifically, we cut the curve and a
shortest path from every vertex to the curve. See Figure 7.

To argue about the ridge tree of λ, we consider the closed curve consisting of the points
at some small fixed distance ε from λ. This curve is composed of circular arcs and geodesic
segments joined at angles ≤ π (on the side opposite λ). Thus by [4, Lemma 4], its ridge tree
is a tree. The ridge tree of λ itself (when ε = 0) has the peculiarity that it has a cycle if
λ has an interior point with surface angle < π on both sides of the curve (e.g., vertex v in
Figure 7). However, we split any such vertex into two copies, corresponding to the s and t
sides of the curve, which breaks the cycle in the unfolded ridge tree.

Suppose p is an interior point of the quasigeodesic curve λ where the surface angle to
one side, say the s side, is β, where β < π. Necessarily, p is a vertex of the polyhedron,
otherwise the surface angle on the other side of the curve would be greater than π. We do
not introduce a cut for this vertex in the unfolding, since it already lies on λ.
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Using Lemma 3, we claim that no shortest path cut from any vertex v will report to point
p on side s, since one of the two surface angles formed would be < π

2 . Thus the quasigeodesic
star unfolding from λ will have a vertex image with an angle β corresponding to the s side
of p. Let ps denote this vertex image in the unfolding.

Observe that ps is a leaf of the unfolded ridge tree and that the incident ridge tree edge e
is a straight segment forming angles β

2 with the segment images to either side of ps. We can
consider e to have two segment wings, albeit degenerate ones, with one side (between ps and
λ) of length 0. We call this a quasi-wing-pair (see the shaded examples in Figure 7).

With these observations in hand, we can extend the result of the previous section to
quasigeodesics. The main idea is to show that quasi-wing pairs can only occur as the first or
last wing-pair along a path of the unfolded ridge tree, and thus that the induction proof of
the previous section carries over.

I Lemma 10. Let P be a convex polyhedron with a quasigeodesic curve λ on its surface.
Suppose that u and v are distinct edges of the ridge tree such that the path in the unfolded
ridge tree from u to v is balanced. Then the (quasi-)wing-pairs of u and v do not overlap.

3.2 Quasigeodesic Loops
In this section, we prove non-overlap of the star unfolding from geodesic (and quasigeodesic)
loops. When the two endpoints a and b of a geodesic or quasigeodesic curve λ coincide at
point o, we call this a (quasi)geodesic loop with loop point o. A (quasi)geodesic loop cuts the
surface of the polyhedron into two pieces. One piece must have a surface angle at o that is
≤ π, and we call this the inside of the loop and identify it with the s side of the curve. The
other piece is called the outside and will be identified with the t side of the curve.

Itoh, O’Rourke, and Vîlcu [9] proved that for any quasigeodesic loop: (1) the inside
unfolds without overlap; (2) the outside unfolds without overlap; and (3) the two unfolded
pieces can be reattached (without overlap) along a common segment of the cut curve. Their
proof of (2) relies on a Lemma [9, Lemma 7] about the star unfolding from a point, which
they say will be proved in a companion paper, but unfortunately, they discovered1 that the
Lemma is false. The Lemma claims that for any star unfolding from a point x and for any
polyhedron vertex v, the exterior angle at v in the unfolding yields an empty wedge. More
precisely, if the exterior angle at v is (counterclockwise) xi, v, xi+1 then the claim is that the
counterclockwise wedge formed by the rays vxi and vxi+1 does not contain any part of the
unfolding. An example where this fails is shown in Figure 8.

In this section we examine the star unfolding from a quasigeodesic curve where the two
endpoints, a and b, of the curve are arbitrarily close together. In the limit when a = b

the unfolding consists of two pieces joined at the point a = b with the angular bisectors at
the point a = b aligned in the unfolding. We call this the conjoined star unfolding from a
quasigeodesic loop. See Figure 9. Our main result of this section is that the conjoined star
unfolding from a quasigeodesic loop does not overlap. This implies that the outside piece
unfolds without overlap, which repairs the missing step of Itoh, O’Rourke and Vîlcu’s result.

I Theorem 11. The conjoined star unfolding from a quasigeodesic loop does not overlap.

We prove Theorem 11 by showing that every path through the ridge tree for a geodesic
loop is balanced. Then by Lemma 7, the unfolding does not overlap. Furthermore, by
Lemma 10, the result extends to quasigeodesics.

1 Private communication from J. O’Rourke
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Figure 8 A counterexample to [9, Lemma 7]. (a) A doubly covered triangle with source point x.
(b) The star unfolding from x showing a wedge formed by the exterior angle x3, v3, x1 that intersects
the unfolding. Dashed edges show the back face; grey edges show the ridge tree.

v1

v4

v7

v10

v12 v13

(a)

o v1v10

v4

v7

v12

v13

(b)

Figure 9 Conjoined star unfolding from a geodesic loop. (a) Geodesic loop on the surface of a
polyhedron (partially transparent to view the full loop). (b) Unfolding.

I Lemma 12. Every path through the unfolded ridge tree of the conjoined star unfolding
from a quasigeodesic loop is balanced.

Proof. Recall our assumption that the s-side of the curve is inside the loop. By Lemma 3,
no vertex inside the loop can report to the loop point o, since the surface angle to the interior
of the loop is < π (or if it is equal to π, we can assume the vertex reports to b instead).

Consider the segment of the ridge tree (call it u) that lies between a and b on the inside
of the loop and touches loop point o. Observe what happens in the limit as a and b approach
point o. Consider the kite-shaped region of the surface delimited by a, o, b, and p, where p is
the intersection between the rays perpendicular to the geodesic at a and b respectively (see
Figure 10). Call this region R. When a and b are close enough to o there are no vertices or
other ridge tree edges inside the region R, and therefore some sub-segment of u will extend
from p to o (i.e., perpendicularly bisect ab). Therefore the source angle of each wing of u is
at least π

2 , and the source angle of u’s wing-pair is at least π. Furthermore, this is the only
edge of the ridge tree on the inside of the loop that has point-wings reporting to a or b.

Consider any path σ through the unfolded ridge tree. Let A and B be the sides of σ. We
must show that αA(σ) ≤ π and αB(σ) ≤ π. There are three possible cases for the path:

1. The path σ does not include u, and remains entirely on the inside of the loop. Because
u is the only ridge tree edge inside the loop whose wings have non-zero source angle,
therefore αA(σ) = αB(σ) = 0.
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Figure 10 Zoomed-in view of the surface as a and b approach o. Assuming no vertices are inside
the region aobp, there is at least π

2 source angle to either side of ridge tree edge u.
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Figure 11 An illustration of the third case in the proof of Lemma 12, where the A side of the
path σ (in heavy dashed red) has point wings reporting to a and to b.

2. The path σ does not include u, and remains entirely on the outside of the loop. As noted
above, the source angle of u’s wing-pair is at least π. Therefore, the remaining source
angle of all wings along every other possible path (i.e., not including u) must be ≤ π.
Thus αA(σ) ≤ π and αB(σ) ≤ π.

3. The path σ includes u. We must show that αA(σ) ≤ π and αB(σ) ≤ π. Any edge of σ
(apart from u) that lies inside the geodesic loop only has segment wings to either side and
these contribute 0 to the source angle of the path. Thus it suffices to look at the portion
of σ starting with u and then following ridge tree edges that lie outside the geodesic loop.
Call this subpath σ′. Ridge tree edge u has a point wing to either side, one reporting to a
and one reporting to b. Suppose that the A side of the path has the point wing reporting
to a. Suppose that αA(σ′) ≥ αB(σ′). If side A only has point wings that report to a, then
its source angle is at most π. So suppose that side A has a point wing that reports to b.
See Figure 11. As we walk around the path σ′, in counterclockwise order starting with u
on the A side, the wings report in order to a, then t, then b. Thus all the wings on the
B side must be point wings that report to b, which implies that the sum of their source
angles is at most π, i.e., αB(σ′) ≤ π. Since every wing on the B side is a point-wing
reporting to b, every point wing on the A side must be paired with a point wing on the
B side, and each such pair has equal source angles. Therefore αA(σ′) ≤ αB(σ′), and we
just showed this is ≤ π. J
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3.3 The Geodesic Star Unfolding as Two Non-overlapping Pieces

Although we have not proved that the geodesic star unfolding never overlaps, in this section
we show that it can always be cut into two pieces each of which is non-overlapping. The
extra cuts consist of two shortest paths from a point on the ridge tree to the geodesic curve.

I Lemma 13. Let P be a convex polyhedron and λ be a geodesic curve on P. Then there
is a point p of the ridge tree of λ such that cutting two shortest paths on P from p to the
geodesic curve λ separates the geodesic star unfolding Sλ into two pieces each of which is
non-overlapping.

Proof. We will split the ridge tree into two subtrees, either at an internal point of an edge
or at a ridge vertex v, in which case we split the ridge tree edges incident to v into two
subsets, each consecutive in the cyclic order of edges around v. Call such subtrees proper.
The geodesic star unfolding Sλ can then be cut into two pieces as follows: if the two subtrees
are joined at an internal point p of a ridge tree edge, then we cut the two shortest paths
from p to the geodesic curve λ; and if the two subtrees are joined at vertex v then we cut the
two shortest paths from v to λ that separate the incident ridge tree edges as specified. This
ensures that if two wing-pairs are in the same piece of the unfolding, then the ridge tree path
between them lies in the same subtree. So long as each subtree is balanced, Lemma 7 ensures
that no two wing-pairs from the same piece overlap, i.e., that each piece is non-overlapping.

In the remainder of the proof we show how to partition the ridge tree into two proper
balanced subtrees. Each edge e of the ridge tree has an associated source angle of its wing
pair, σ(e), and the sum of these weights over the whole ridge tree is 2π. We remark that a
weaker form of the lemma with three non-overlapping pieces can be obtained from the result
that any edge-weighted tree can be separated at a single vertex into three subtrees of weight
at most one half the total weight. To prove the lemma we will argue about the source angles
on each side of each ridge tree edge.

Among all proper subtrees of the ridge tree, let T be a maximal subtree that is balanced.
Let T̄ be the complement. We claim that T̄ is balanced.

If the source angle of T is at least π, then T̄ has source angle ≤ π so it must be balanced
as well. Otherwise the source angle of T is < π. Note that T cannot be rooted at an interior
point of an edge otherwise we could move the point further along the edge to increase the
source angle of T a small amount without exceeding π. Therefore T must be rooted at a
vertex v of the ridge tree. Among the edges incident to v in clockwise order, let e and f be
the first and last edges outside T . Note that e 6= f (i.e., there is more than one edge incident
to v in T̄ ) otherwise we could move the root of T along e to increase the source angle by a
small amount. Adding e and its subtree to T gives an unbalanced subtree, so there must
be an unbalanced path µe that contains e and a subpath in T . Similarly, there must be an
unbalanced path µf that contains f and a subpath in T .

Note that any two unbalanced path-sides must have a wing in common, otherwise we
would have two disjoint sets of wings each with source angle greater than π. Thus the
unbalanced sides of µe and µf must both lie on the clockwise side of e and f or both on the
counterclockwise side of e and f (relative to the cyclic ordering of edges at v). Suppose the
former, without loss of generality.

Suppose that T̄ has an unbalanced path µ. The unbalanced side must share wings with
the unbalanced side of µe and with the unbalanced side of µf , and therefore must include the
clockwise sides of both e and of f , which is impossible. Therefore T̄ is balanced, and we can
separate the geodesic star unfolding Sλ into two pieces each of which is non-overlapping. J
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4 Conclusions

We have given a simple proof that the star unfolding from a point does not overlap, and
extended it to some cases of the star unfolding from a geodesic curve. We leave open the
main conjecture that the geodesic star unfolding does not overlap. All we can say about the
general case is that the unfolding can be partitioned into two non-overlapping pieces.

The first author’s thesis [10] contains further results on geodesics that have been “fully
extended” until the endpoints a and b intersect the curve. When the endpoints reach opposite
sides of the curve (“S-shaped”) the unfolding does not overlap because it is balanced. When
the endpoints reach the same side of the curve (“C-shaped”) the unfolding need not be
balanced, though some special cases can still be proved to avoid overlap.

The figures in this paper were generated with a custom program written using CGAL,
OpenGL, and Cairo. For more information, see the first author’s thesis [10].

Acknowledgements. We thank Timothy Chan for suggesting Lemma 13. We thank Joseph
O’Rourke, Costin Vîlcu, and anonymous referees for helpful comments.

References
1 Pankaj K. Agarwal, Boris Aronov, and Catherine A. Schevon. Star unfolding of a polytope

with applications. SIAM Journal on Computing, 26:1689–1713, 1997.
2 Boris Aronov and Joseph O’Rourke. Nonoverlap of the star unfolding. Discrete & Compu-

tational Geometry, 8(3):219–250, 1992.
3 Erik D. Demaine, Martin L. Demaine, Anna Lubiw, Arlo Shallit, and Jonah Shallit. Zipper

unfoldings of polyhedral complexes. In Proceedings of the 22nd Annual Canadian Confer-
ence on Computational Geometry (CCCG), pages 219–222, August 2010.

4 Erik D. Demaine and Anna Lubiw. A generalization of the source unfolding of convex
polyhedra. In Revised Papers from the 14th Spanish Meeting on Computational Geometry
(EGC 2011), volume 7579 of Lecture Notes in Computer Science, pages 185–199, Alcalá de
Henares, Spain, June 27–30 2012.

5 Erik D. Demaine and Joseph O’Rourke. Geometric Folding Algorithms: Linkages, Origami,
Polyhedra. Cambridge University Press, New York, NY, USA, 2007.

6 Albrecht Dürer. The Painter’s Manual: A Manual of Measurement of Lines, Areas, and
Solids by Means of Compass and Ruler Assembled by Albrecht Dürer for the Use of All
Lovers of Art with Appropriate Illustrations Arranged to be Printed in the Year MDXXV.
The literary remains of Albrecht Dürer. Abaris Books, 1977.

7 Kouki Ieiri, Jin-ichi Itoh, and Costin Vîlcu. Quasigeodesics and farthest points on convex
surfaces. Advances in Geometry, 11(4):571–584, 2011.

8 Jin-Ichi Itoh, Joseph O’Rourke, and Costin Vîlcu. Source unfoldings of convex polyhedra
with respect to certain closed polygonal curves. In Proceedings of the 25th European Work-
shop on Computational Geometry (EuroCG), pages 61–64, 2009.

9 Jin-ichi Itoh, Joseph O’Rourke, and Costin Vîlcu. Star unfolding convex polyhedra via
quasigeodesic loops. Discrete & Computational Geometry, 44(1):35–54, 2010.

10 Stephen Kiazyk. The star unfolding from a geodesic curve. Master’s thesis, Cheriton School
of Computer Science, University of Waterloo, 2014.

11 Joseph O’Rourke and Costin Vîlcu. Development of curves on polyhedra via conical exist-
ence. Computational Geometry, 47(2, Part A):149–163, 2014.

12 Micha Sharir and Amir Schorr. On shortest paths in polyhedral spaces. SIAM Journal on
Computing, 15(1):193–215, 1986.


	Introduction
	Preliminaries and Definitions

	New Proof for the Point Star Unfolding
	Geodesic Star Unfolding
	Extension to Quasigeodesic Curves
	Quasigeodesic Loops
	The Geodesic Star Unfolding as Two Non-overlapping Pieces

	Conclusions

