
Approximation Algorithms for the Unsplittable
Flow Problem on Paths and Trees
Khaled Elbassioni1, Naveen Garg2, Divya Gupta3, Amit Kumar2,
Vishal Narula4, and Arindam Pal2

1 MPI-Informatik, Germany
2 IIT Delhi, India
3 UCLA, USA
4 Goldman Sachs, India

Abstract
We study the Unsplittable Flow Problem (UFP) and related variants, namely UFP with
Bag Constraints and UFP with Rounds, on paths and trees. We provide improved con-
stant factor approximation algorithms for all these problems under the no bottleneck assumption
(NBA), which says that the maximum demand for any source-sink pair is at most the minimum
capacity of any edge. We obtain these improved results by expressing a feasible solution to a
natural LP relaxation of the UFP as a near-convex combination of feasible integral solutions.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Approximation Algorithms, Integer Decomposition, Linear Program-
ming, Scheduling, Unsplittable Flows

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2012.267

1 Introduction

In this paper, we give new results for several variants of the Unsplittable Flow Problem
on paths and trees. The setting for all of these problems is as follows: we are given a graph
G = (V,E), where G is either a path or a tree, with edge capacities ce for each edge
e ∈ E, a set of demands D1, . . . , Dm, where each demand Di consists of a source-sink pair
si, ti, a bandwidth requirement di, and a profit wi. In order to route a demand Di, we
send di amount of flow from si to ti along the (unique) path between them in G. A set
of demands is said to be feasible if they can be simultaneously routed without violating
any edge capacity. In the Max-UFP problem, we would like to find a feasible subset of
demands of maximum total profit. In the Round-UFP problem, we would like to color
the demands with minimum number of colors such that demands with a particular color
form a feasible subset. Another interesting variant is the Bag-UFP problem, where we are
given sets D1, . . . ,Dk, where each set (or bag) Di consists of a set of demands, and has an
associated profit (the individual demands in each set do not have profits, though they could
have different bandwidth requirements). A solution needs to pick at most one demand from
each bag such that these demands are feasible. The goal is to maximize the total profit of
bags from which a demand is picked.

All of the above problems are NP-Hard (even for a path), and there has been lot of recent
work on obtaining constant factor approximation algorithms for them. An assumption often
made in these settings is the so-called no-bottleneck assumption: the maximum bandwidth
requirement of any demand is at most the minimum edge capacity, i.e., maxi di ≤ mine ce.
Obtaining constant factor approximation algorithms for the above problems without the

© Khaled Elbassioni, Naveen Garg, Divya Gupta, Amit Kumar, Vishal Narula, Arindam Pal;
licensed under Creative Commons License NC-ND

32nd Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2012).
Editors: D. D’Souza, J. Radhakrishnan, and K. Telikepalli; pp. 267–275

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2012.267
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

268 Approximation Algorithms for the Unsplittable Flow Problem on Paths and Trees

no-bottleneck assumption remains a challenging task; the only exception being the recent
result of Bonsma et al. [4] which gives a constant factor approximation algorithm for Max-
UFP on the line. We will assume that the no-bottleneck assumption holds in subsequent
discussions.

Max-UFP and Bag-UFP are weakly NP-Hard, since they contain the Knapsack prob-
lem as a special case, where there is just a single edge. Recently, it has been proved that
the problem is strongly NP-hard, even for the restricted case where all demands are chosen
from {1, 2, 3} and all capacities are uniform [4]. However, the problem is not known to be
APX-hard, so a polynomial time approximation scheme (PTAS) may still be possible. For
the special case of (Knapsack), an FPTAS is well-known. When all capacities, demands
and profits are 1, Max-UFP specializes to Max-EDP, the maximum edge-disjoint paths
problem.

Chakrabarti et al. [7] gave the first constant approximation algorithm for Max-UFP on
paths and the approximation ratio was subsequently improved to 2 + ε, for any constant
ε > 0 by Chekuri et al. [8]. They also gave a constant factor approximation algorithm
for Max-UFP on trees. These algorithms are based on the idea of rounding a natural LP
relaxation of the Max-UFP problem.

Round-UFP is NP-Hard, since it contains the Bin Packing problem as a special case,
where there is just a single edge. Bin Packing is known to be APX-hard. However, it
has an asymptotic polynomial time approximation scheme (APTAS). There are also simple
greedy algorithms like first-fit and best-fit, which give constant-factor approximations (see
e.g. [1]). When all capacities and demands are 1, Round-UFP reduces to the interval
coloring problem on paths, for which a simple greedy algorithm gives the optimal coloring.

The Round-UFP problem for paths has been well-studied in the context of on-line
algorithms as well. Here the intervals arrive in arbitrary order, and we need to assign them
a color on their arrival so that all intervals with one color form a feasible packing, i.e. total
demand on any edge does not exceed its capacity. When all capacities and demands are 1, i.e.
when no two intersecting intervals can be given the same color, the first-fit algorithm achieves
a constant competitive ratio ([15, 16, 18]). Kierstead and Trotter [14] gave a different online
algorithm which uses at most 3ω− 2 colors. They also proved that any deterministic online
algorithm in the worst case will require at least 3ω − 2 colors. For the case of arbitrary
edge capacities and demands with the no-bottleneck assumption (NBA), which is same as
Round-UFP, Epstein et al. [12] gave a 78-competitive algorithm. Prior to our work, this
was the best known result for Round-UFP in the off-line setting as well.

The Bag-UFP problem was introduced by Chakaravarthy et al. [6], who gave an
O
(

log
(
cmax
cmin

))
-approximation algorithm. Here cmax and cmin are the maximum and min-

imum edge capacities of the path respectively. They gave the first constant factor approx-
imation algorithm for the Bag-UFP problem on paths – the approximation ratio is 120. A
related problem is the job interval selection problem for which Chuzhoy et al. [11] gave an(

e
e−1

)
-approximation algorithm. See also Erlebach et al. [13] for some additional results.

1.1 Our Contributions
In this paper, we give a unified framework for these problems. We give a simple algorithm
for Round-UFP on paths. We use this to give a constant factor approximation algorithm
for Max-UFP as well. The idea is to start with a natural LP relaxation for Max-UFP.
We show that using our algorithm for Round-UFP, one can express a fractional solution
to the LP as a convex combination of integer solutions (up to a constant factor). This

K. Elbassioni, N. Garg, D. Gupta, A. Kumar, V. Narula, and A. Pal 269

idea generalizes to Bag-UFP as well. This leads to improved approximation algorithms for
several of these problems. More specifically, our results are:

We give a 24-approximation algorithm for Round-UFP on paths. This is much simpler
than the 78-competitive algorithm of [12], and gives an improved approximation ratio.
We give a 65-approximation algorithm for Bag-UFP on paths, thus improving the con-
stant approximation factor of 120 given by Chakaravarthy et al. [5] for this problem.
For trees, we give the first constant factor approximation algorithm for Round-UFP –
the approximation factor is 64.

1.2 Other Related Work
Recently, Bonsma et al. [4] gave the first constant factor approximation algorithm for Max-
UFP on a path without assuming NBA. They also proved that the problem is strongly
NP-hard, even for the restricted case where all demands are chosen from {1, 2, 3} and all
capacities are uniform.

The round version of Bag-UFP is hard to approximate, because scheduling jobs with
interval constraints is a special case of this problem. In the latter problem, we have a
collection of jobs, where each job has a set of intervals associated with it. We can schedule a
job in any of the intervals from its set. The goal is to color the jobs with minimum number
of colors, such that the set of jobs with a particular color are feasible, i.e., one can pick an
interval from the set associated with each job, such that these intervals are disjoint. Chuzhoy
et al. [10] proved that it is NP-hard to get better than O(log logn)-approximation algorithm
for this problem. In the continuous version of this problem, the intervals associated with a
job form a continuous time segment, described by a release date and a deadline. Chuzhoy
and Codenotti [9] gave a constant factor approximation algorithm for the continuous version.

1.3 Organization of the Paper
In Section 2, we define the problems considered in this paper. We give a constant factor
approximation algorithm for Round-UFP on paths in Section 3. In Section 4, we use the
ideas developed in Section 3 to get a constant factor approximation algorithm for Max-UFP
on paths, which we then extend to Bag-UFP on paths in Section 5. In Section 6 we give a
constant factor approximation algorithm for Round-UFP on trees.

2 Preliminaries

We formally define the problems considered in this paper. In all of these problems, an
instance will consist of a graph G = (V,E), which is either a path or a tree, with edge
capacities ce for all edges e ∈ E. In case of Round-UFP and Max-UFP, we are also given
a set of demands D1, . . . , Dm. Demand Di has an associated source-sink pair, (si, ti), a
bandwidth requirement di and a profit wi. We shall use Ii to denote the associated unique
path between si and ti in G (in case of a path, we shall also call this an interval). A subset
of demands will be called feasible if they can be routed without violating the edge capacities.
In Max-UFP, the goal is to find a feasible subset of demands of maximum total profit. In
Round-UFP, the goal is to partition the set of demands into minimum number of colors,
such that demands with a particular color are feasible.

Finally, we define the Bag-UFP problem. We will consider this problem for the case
of paths only. Here, we are given sets, which we will call bags, D1, . . . ,Dk, where each set

FSTTCS 2012

270 Approximation Algorithms for the Unsplittable Flow Problem on Paths and Trees

Dj consists of a set of demands Dj
1, . . . , D

j
nj
. As before, each demand Dj

i is specified by an
interval Iji and a bandwidth requirement dji . We are also given profits pj associated with
each of the bags Dj . A feasible solution to such an instance picks at most one demand from
each of the bags – the selected demands should form a feasible set of routable demands. The
profit of such a solution is the total profit of the bags from which we select a demand. The
goal is to maximize the total profit.

We require our instances to satisfy the so called no-bottleneck assumption. This assump-
tion states that maxi di ≤ mine ce, where i varies over all the demands, and e varies over all
the edges in G. We now give some definitions which will be used by all the algorithms. We
will divide the set of demands into two classes – large and small demands.

I Definition 1. The bottleneck capacity bi of a demand Di is the smallest capacity of an
edge in the (unique) path between si and ti – such an edge is called the bottleneck edge for
demand Di. A demand Di is said to be small if di ≤ 1

4bi, else it is a large demand.

3 Approximation Algorithm for Round-UFP

We consider an instance I of the Round-UFP problem given by a path G on n points, and
a set of demands D1, . . . , Dm as described in Section 2. Let O denote an optimal solution,
and col(O) denote the number of colors used by O. We begin with a few definitions.

I Definition 2. The congestion of an edge e, re, is defined as
⌈∑

i:e∈Ii
di

ce

⌉
, i.e., the ratio of

the total demand through the edge e to its capacity. Let rmax = maxe re be the maximum
congestion on the path.

I Definition 3. The clique size on an edge e, Le, is defined as the number of large demands
containing the edge e. Let Lmax = maxe Le be the maximum clique size on the path.

Clearly, col(O) ≥ rmax. We give an algorithm A which uses O(rmax) colors. This will
give a constant factor approximation algorithm for this problem. We first consider the case
of large demands.

I Lemma 4. We can color all large demands with at most Lmax colors. Further, Lmax ≤
8col(O).

Proof. We will use the following result of Nomikos et al. [17].

I Lemma 5. [17] Consider an instance of Round-UFP where all capacities are integers
and all demands Di have bandwidth requirement di = 1. Then, one can color these demands
with rmax colors.

We first scale all capacties and demand requirements such that cmin becomes equal to
1. Now, we round all capacities down to the nearest integer, and we scale all the demand
requirements di to 1. Note that this will affect the congestion of an edge e by a factor of at
most 8 – since ce was at least 1, rounding it down to the nearest integer will reduce it by
a factor of at most 1/2. Since all demands were of size at least 1/4 (because they are large
demands), we may increase the requirement of a demand by factor of at most 4. Thus, the
value of rmax will increase by factor of at most 8. Now, we invoke the result in Lemma 5.
This proves the lemma. J

K. Elbassioni, N. Garg, D. Gupta, A. Kumar, V. Narula, and A. Pal 271

We now consider the more non-trivial case of small demands. We divide the edges into
classes based on their capacities. We say that an edge e is of class l if 2l ≤ ce < 2l+1. We
use cl(e) to denote the class of e. For a demand Dj , let lj be the smallest class such that
the interval Ij contains an edge of class lj . The critical edge of demand Dj is defined as the
first edge (as we go from left to right from sj to tj) in Ij of class lj . Note that the critical
edge could be different from the bottleneck edge, though both of them would be of class lj .

I Lemma 6. The small demands can be colored with at most 16rmax colors.

Proof. We maintain 16rmax different solutions to the instance I, where a solution routes
a subset of the demands. We will be done if we can assign each demand to one of these
solutions. Let us call these solutions S1, . . . ,SK , where K = 16rmax. We first describe the
routing algorithm and then show that it has the desired properties.

We arrange the demands in order of their left end-points – let this ordering beD1, . . . , Dm.
Let ej be the critical edge of Dj . When we consider Dj , we send it to a solution Sl for
which the total requirements of demands containing ej is at most cej

/16. At least one such
solution must exist, otherwise re >

16rmax·cej
/16

cej
= rmax, a contradiction. This completes

the description of how we assign each demand to one of the solutions. We now prove that
each of the solutions Sl is feasible.

Fix a solution Sl and an edge e. Suppose e is of class i. Let D(Sl) be the demands routed
in Sl which contain the edge e. Among such demands, let Du be the last demand for which
the critical edge is to the left of e (including e) – let e′ be such an edge. Clearly, cl(e′) ≥ i.
For an integer i′ ≤ i, let e(i′) be the first edge of class i′ to the right of e (so, e(i) is same as
e).

First consider the demands in D(Sl) which are considered before (and including Du).
All of these demands go through e′ (because all such demands begin before Du does and
contain e). So, the total requirement of such demands, excluding Du, is at most ce′/16 –
otherwise we would not have assigned Du to this solution. Because Du is a small demand
and cl(e′) ≥ i, the total requirements of such demands (including Du) is at most

2i+1

16 + ce
4 ≤

ce
8 + ce

4 = 3ce
8 .

Now consider the demands in D(Sl) whose critical edges are to the right of e – note that,
such an edge must be one of e(i′) for some i′ < i. Similar to the argument above, the total
requirements of such demands is at most

∑
i′<i

(
2i′+1

16 + 2i′+1

4

)
≤ 5 · 2i+1

16 ≤ 5ce
8 .

Thus, we see that the total requirements of demands in D(Sl) is at most

5ce
8 + 3ce

8 ≤ ce.

Hence the solution is feasible. This proves the lemma. J

Combining the above two lemmas, we get the following theorem.

I Theorem 7. Given an instance of Round-UFP, there is an algorithm for this problem
which uses at most 24·col(O) colors, and hence it is a 24-approximation algorithm. Further,
if all demands are small, then one can color the demands using at most 16 · col(O) colors.

FSTTCS 2012

272 Approximation Algorithms for the Unsplittable Flow Problem on Paths and Trees

4 Approximation Algorithms for Max-UFP

In this section we show how ideas from Round-UFP can be used to derive a constant factor
approximation algorithm for Max-UFP. Consider an instance I of Max-UFP. As before,
we divide the demands into small and large demands. For large demands, Chakrabarti et
al. [7] showed that one can find the optimal solution by dynamic programming.

I Lemma 8. [7] The number of δ-large demands crossing any edge in a feasible solution is
at most 2

δ

(1
δ − 1

)
. Hence, an optimum solution can be found in nO(1/δ2) time using dynamic

programming.

Note that, according to our definition, large demands are 1
4 -large. Now we consider the

small demands. The following lemma gives an approximation algorithm for small demands.

I Lemma 9. If there are only small jobs, then there is a 16-approximation algorithm for
Max-UFP.

Proof. We write the following natural LP relaxation for this problem – a variable xi for
demand Di which is 1 if we include it in our solution, and 0 otherwise.

max
∑
i

wixi∑
i:e∈Ii

dixi ≤ ce for all edges e (1)

0 ≤ xi ≤ 1 for all demands i

Let x? be an optimal solution to the LP relaxation. Let K be an integer such that all
the variables x?i can be written as αi

K for some integer αi. Now we construct an instance
I ′ of Round-UFP as follows. For each (small) demand Di in I, we create αi copies of it.
Rest of the parameters are same as those in I. First observe that inequality (1) implies that∑
i:e∈Ii

diαi ≤ Kce,∀e ∈ E. Thus, the congestion of each edge in I ′ is at most K. Using
Lemma 6 for small demands, we can color the demands with at most 16K colors. It follows
that the best solution among these 16K solutions will have profit at least 1

16 ·
∑
i wix

?
i . J

Thus, we get the following theorem.

I Theorem 10. There is a 17-approximation algorithm for the Max-UFP problem.

Proof. Given an instance I, we divide the demands into large and small demands. For large
demands, we compute the optimal solution using Lemma 8, whereas for small demands we
compute a solution with approximation ratio 16 using Lemma 9. Then we pick the better
of the two solutions.

Consider an optimal solution O with profit profit(O). Let profitl(O) be the profit
for large demands and profits(O) be the profit for small demands. If profitl(O) ≥
1

17 · profit(O), then our solution for large demands will also be at least 1
17 · profit(O).

Otherwise, profits(O) ≥ 16
17 · profit(O). In this case, our solution for small demands will

have value at least 1
16 ·

16
17 · profit(O) = 1

17 · profit(O). J

5 Approximation Algorithms for Bag-UFP

We now extend the above algorithm to the Bag-UFP problem. Consider an instance I
of this problem. As before, we classify each of the demands Dj

i as either large or small.
For each bag, Dj , let Dj,l be the set of large demands in Dj and Dj,s be the set of small
demands in Dj . Again, we have two different strategies for large and small demands.

K. Elbassioni, N. Garg, D. Gupta, A. Kumar, V. Narula, and A. Pal 273

I Lemma 11. If there are only large jobs, then there is a 48-approximation algorithm for
Bag-UFP.

Proof. Suppose we have the further restriction that the selected intervals need to be disjoint.
Lemma 8 implies that this will worsen the objective value by a factor of at most 24. However,
for the latter problem, we can use the 2-approximation algorithm of Berman et al. [3] and
Bar-Noy et al. [2]. This gives a 48-approximation algorithm. J

I Lemma 12. If there are only small jobs, then there is a 17-approximation algorithm for
Bag-UFP.

Proof. As in the case of Max-UFP problem, we first write an LP relaxation, and then use
an algorithm similar to the one used for the Round-UFP problem. We have a variable xji
for demand Dj

i , which is 1 if we include it in our solution and 0 otherwise, and a variable
yj which is 1 if we choose a demand from the bag Dj and 0 otherwise. The LP relaxation
is as follows.

max
∑
j

pjyj

∑
i:e∈Ij

i

djix
j
i ≤ ce for all edges e (2)

∑
i

xji ≤ y
j for all bags Dj (3)

0 ≤ xji ≤ 1 for all demands i
0 ≤ yj ≤ 1 for all bags Dj

Let x, y be an optimal solution to the LP above. Again, let K be a large enough integer
such that yj = αj

K , x
j
i = βj

i

K , where αj and βji are integers for all j and i. Now we consider
an instance of Round-UFP where we have βji copies of the demand Dj

i . The only further
restriction is that no two demands from the same bag can get the same color. Inequality (2)
implies that

∑
i:e∈Ij

i
djiβ

j
i ≤ Kce,∀e ∈ E. So the congestion bound is K. We proceed

as in the proof of Lemma 6, except that now we have 17K different solutions. When we
consider the demand Dj

i , we ignore the solutions which contain a demand from the bag
Dj . Inequality (3) implies that

∑
i β

j
i ≤ αj ≤ K,∀j. Hence, there will be at most K such

solutions. For the remaining 16K solutions, we argue as in the proof of Lemma 6. J

I Theorem 13. There is a 65-approximation algorithm for the Bag-UFP problem.

Proof. This follows from the two previous lemmas. We argue as in the proof of Theorem 10.
J

6 Approximation Algorithms for Round-UFP on Trees

We now consider the Round-UFP problem on trees. Consider an instance I of this problem
as described in Section 2. We consider the case of large and small demands separately. Let
Dl be the set of large demands and Ds be the set of small demands.

I Lemma 14. There is a 32-approximation algorithm for the above instance when we only
have demands in Dl.

FSTTCS 2012

274 Approximation Algorithms for the Unsplittable Flow Problem on Paths and Trees

Proof. Chekuri et al. [8] gave a 4-approximation algorithm for coloring a set of demands
when all demands have requirement 1, and the capacities are integers. In fact, their algorithm
uses at most 4rmax colors. We can reduce our problem to this case by losing an extra factor
of 8 in rmax – we proceed exactly as in the proof of Lemma 4. J

I Lemma 15. There is a 32-approximation algorithm for the above instance when we only
have demands in Ds.

Proof. The proof is very similar to that of Lemma 6. We maintain 16rmax solutions. For a
demand Di, let ai denote the least common ancestor of si and ti. We consider the demands
in a bottom-up order of ai. For a demand Di, we define two critical edges: the si-critical
edge is the critical edge on the ai − si path, and the ti-critical edge is the critical edge on
the ai − ti-path. We send Di to the solution in which both these critical edges have been
used till 1

16 of their total capacity only. Again it is easy to check that such a solution will
exist. The rest of the argument now follows as in the proof of Lemma 6. J

Combining the above two lemmas, we get

I Theorem 16. There is a 64-approximation algorithm for the Round-UFP problem on
trees.

7 Conclusion and Open Problems

In this paper, we studied the Unsplittable Flow Problem and some of its variants, such
as UFP with Bag Constraints and UFP with Rounds. We gave improved constant
factor approximation algorithms for all these problems under the no bottleneck assumption.
One important open question is, can we improve the approximation factors further? A
related question is, are there lower bounds (hardness results, bad examples or integrality
gap examples) for these problems matching these upper bounds? Another important open
problem is the approximability of these problems without NBA. For Max-UFP on paths,
a (7 + ε)-approximation is known, but for the other problems the question is not settled.

References
1 The Design of Approximation Algorithms. Cambridge University Press, 2011.
2 Amotz Bar-Noy, Sudipto Guha, Joseph Naor, and Baruch Schieber. Approximating the

throughput of multiple machines under real-time scheduling. In STOC, pages 622–631,
1999.

3 Piotr Berman and Bhaskar DasGupta. Improvements in throughout maximization for real-
time scheduling. In STOC, pages 680–687, 2000.

4 Paul Bonsma, Jens Schulz, and Andreas Wiese. A constant factor approximation algorithm
for unsplittable flow on paths. In FOCS, pages 47–56, 2011.

5 Venkatesan T. Chakaravarthy, Anamitra R. Choudhury, and Yogish Sabharwal. A near-
linear time constant factor algorithm for unsplittable flow problem on line with bag con-
straints. In FSTTCS, pages 181–191, 2010.

6 Venkatesan T. Chakaravarthy, Vinayaka Pandit, Yogish Sabharwal, and Deva P. Seeth-
aram. Varying bandwidth resource allocation problem with bag constraints. In IPDPS,
pages 1–10, 2010.

7 Amit Chakrabarti, Chandra Chekuri, Anupam Gupta, and Amit Kumar. Approximation
algorithms for the unsplittable flow problem. Algorithmica, 47(1):53–78, 2007.

K. Elbassioni, N. Garg, D. Gupta, A. Kumar, V. Narula, and A. Pal 275

8 Chandra Chekuri, Marcelo Mydlarz, and F. Bruce Shepherd. Multicommodity demand
flow in a tree and packing integer programs. ACM Transactions on Algorithms, 3(3), 2007.

9 Julia Chuzhoy and Paolo Codenotti. Resource minimization job scheduling. In APPROX-
RANDOM, pages 70–83, 2009.

10 Julia Chuzhoy and Joseph Naor. New hardness results for congestion minimization and
machine scheduling. J. ACM, 53(5):707–721, 2006.

11 Julia Chuzhoy, Rafail Ostrovsky, and Yuval Rabani. Approximation algorithms for the job
interval selection problem and related scheduling problems. Math. Oper. Res., 31(4):730–
738, 2006.

12 Leah Epstein, Thomas Erlebach, and Asaf Levin. Online capacitated interval coloring.
SIAM J. Discrete Math., 23(2):822–841, 2009.

13 Thomas Erlebach and Frits C. R. Spieksma. Interval selection: Applications, algorithms,
and lower bounds. J. Algorithms, 46(1):27–53, 2003.

14 H.A. Kierstead and W.T. Trotter. An extremal problem in recursive combinatorics. Con-
gressus Numerantium, 33:143–153, 1981.

15 Hal A. Kierstead. The linearity of first-fit coloring of interval graphs. SIAM J. Discrete
Math., 1(4):526–530, 1988.

16 Hal A. Kierstead and Jun Qin. Coloring interval graphs with first-fit. Discrete Mathematics,
144(1-3):47–57, 1995.

17 Christos Nomikos, Aris Pagourtzis, and Stathis Zachos. Routing and path multicoloring.
Inf. Process. Lett., 80(5):249–256, 2001.

18 Sriram V. Pemmaraju, Rajiv Raman, and Kasturi R. Varadarajan. Max-coloring and online
coloring with bandwidths on interval graphs. ACM Transactions on Algorithms, 7(3):35,
2011.

FSTTCS 2012

	Introduction
	Our Contributions
	Other Related Work
	Organization of the Paper

	Preliminaries
	Approximation Algorithm for Round-UFP
	Approximation Algorithms for Max-UFP
	Approximation Algorithms for Bag-UFP
	Approximation Algorithms for Round-UFP on Trees
	Conclusion and Open Problems

