
Bounded Satisfiability for PCTL†

Nathalie Bertrand1,2, John Fearnley2, and Sven Schewe2

1 Inria Rennes Bretagne Atlantique, Rennes, France
2 Department of Computer Science, University of Liverpool, Liverpool, UK

Abstract
While model checking PCTL for Markov chains is decidable in polynomial-time, the decidability
of PCTL satisfiability is a long standing open problem. While general satisfiability is an intriguing
challenge from a purely theoretical point of view, we argue that general solutions would not be
of interest to practitioners: such solutions could be too big to be implementable or even infinite.
Inspired by bounded synthesis techniques, we turn to the more applied problem of seeking models
of a bounded size: we restrict our search to implementable – and therefore reasonably simple
– models. We propose a procedure to decide whether or not a given PCTL formula has an
implementable model by reducing it to an SMT problem. We have implemented our techniques
and found that they can be applied to the practical problem of sanity checking – a procedure
that allows a system designer to check whether their formula has an unexpectedly small model.

1998 ACM Subject Classification I.2.2 Automatic Programming, F.4.1 Mathematical Logic.

Keywords and phrases Satisfiability, Temporal Logic, Probabilistic Logic.

Digital Object Identifier 10.4230/LIPIcs.CSL.2012.92

1 Introduction

PCTL [9] is a popular logic for the specification of probabilistic systems. The model checking
problem for PCTL formulas over Markov chains has been widely studied: it is known to
be solvable in polynomial time, and mature tools, such as PRISM [13] and MRMC [10],
have been developed. By contrast, satisfiability procedures for PCTL have received much
less attention. Recently, it has been shown that the satisfiability problem for the qualitative
fragment of PCTL is EXPTIME-complete [4]. However, the satisfiability problem for PCTL
itself is not even known to be decidable.

In this paper, we take a step back, and ask the following question: even if we could find
an algorithm for the satisfiability of PCTL, would it be useful to a practitioner? We believe
that it would not. Even in the qualitative fragment of PCTL, there are already formulas
for which there are only infinite state models. Moreover, the problem of deciding, for this
fragment of PCTL, whether there is a finite model is EXPTIME-hard [4]. Obviously, the
situation is at least as bad for the full PCTL logic.

When practitioners use satisfiability procedures, it is likely that they are interested in
whether their formula has an implementable model. A constructive satisfiability procedure
may return an infinite state model, or a model with bizarre transition probabilities that may
be difficult to implement in practice. Neither of these two situations seems to be desirable.
Hence, our goal is to solve the following problem.

“Does a PCTL specification φ have an implementable model?”

† This work was supported by the Engineering and Physical Science Research Council grant
EP/H046623/1 ‘Synthesis and Verification in Markov Game Structures’ and a Leverhulme Trust Vis-
iting Fellowship. Full version available at http://arxiv.org/abs/1204.0469.

© Nathalie Bertrand, John Fearnley, and Sven Schewe;
licensed under Creative Commons License NC-ND

Computer Science Logic 2012 (CSL’12).
Editors: Patrick Cégielski, Arnaud Durand; pp. 92–106

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2012.92
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

N. Bertrand, J. Fearnley, and S. Schewe 93

Our results are inspired by the work on bounded synthesis for LTL specifications [16, 8, 6,
11, 7], where the question of whether there is a small reactive system for an LTL formula is
considered. Building on this, we define the bounded satisfiability problem for PCTL formulas,
where the goal is to find a simple model of a PCTL formula. In our setting, a model is simple
if it has a small number of states, and if it uses only rational transition probabilities that
can be easily simulated by, for example, coin tossing. We believe that having a simple model
is a prerequisite for having an implementable model. Certainly, infinite models, and models
whose probabilities cannot be simulated by coin tossing do not seem to be useful in practice.

Results

In this paper, we introduce the concept of a simple model, and the bounded satisfiability
problem. This is the problem of finding, for a given PCTL formula φ and bound b, a simple
model of φ with at most b states. We provide a reduction from bounded satisfiability to
SMT. While PCTL satisfiability is not known to be decidable, our results show that the
bounded satisfiability problem can be decided. We also provide complexity results for the
bounded satisfiability problem. We show that it is NP-complete in the size of the minimal
model. Furthermore, we show that approximating the size of the minimal model is NP-hard.

We have constructed a simple implementation of our reduction from bounded satisfiab-
ility to SMT, and we have solved the resulting constraint systems using the Yices SMT
solver [5]. We tested this implementation on an academic case study, and our results show
that the bounded satisfiability problem can indeed be solved when the number of states
required is small.

Practical Applications

While our simple implementation does show that small models can be found by our tech-
niques, the size of these models is clearly well below what would be required for constructing
systems in an industrial setting. On the other hand, we argue that a bounded synthesis pro-
cedure for even a small number of states is useful for the purpose of sanity checking.

In model checking, we attempt to verify that a potentially buggy system satisfies a
specification. However, in recent years it has become increasingly clear that the specification
itself may also contain bugs. See, for example, the work on vacuity checking [3, 15, 12, 1, 2].
It can also be remarkably difficult to detect these errors, since a model checking procedure
will simply output “yes” in the case where a buggy system satisfies the buggy specification.

We propose that bounded satisfiability has a role to play in helping system designers find
bugs in their specifications. Consider, for instance, a complicated specification of a network
protocol that allows, among many other things, the network to go down and subsequently be
recovered. A buggy specification may allow a model that goes down immediately after service
has been restored, which would allow the model to circumvent most of the specification.
This model will have far fewer states than a model that implements a correctly functioning
network. In this case, while a correct system may be too large to build with our techniques,
it is quite possible that the broken system could be built.

Hence, we propose that bounded satisfiability should be used as a sanity check, in order
to test that a formula does not have an error that can be exploited by a small model. Sup-
pose that a system designer has a large system that is known to satisfy some complicated
specification. If the bounded satisfiability procedure produces a small model for the spe-
cification, then there is a problem that can be resolved in one of two ways. Firstly, it may
be the case that the small model does precisely what the designer wants, and in this case

CSL’12

94 Bounded Satisfiability for PCTL

the overly-complex large system can be replaced by the small one. The more likely outcome
is that the small model does not do what the designer intended. In this case, the designer
now has a small counter-example, which can be used to help correct the specification.

Our experimental results show that our procedure is particularly suitable for sanity
checking. While our implementation does not seem to scale well with the number of states
in the model, it does scales well with size of the input formula. This indicates that sanity
checking may indeed be possible for the type formulas that are used in practice.

2 Preliminaries

2.1 Markov chains
We recall below the definition of discrete-time Markov chains, simply referred to as Markov
chains in the sequel.

I Definition 1 (Markov chain). A Markov chain is a tuple M = (S,P, ι, L), where S is a
finite or countable set of states, P : S × S → [0, 1] is a probabilistic transition function,
ι ∈ S is an initial state, and L is a labelling function mapping states to atomic propositions.
P satisfies, for all s ∈ S:∑

s′∈S
P(s, s′) = 1

A path inM is a sequence of states π = s0s1 · · · ∈ S∗ such that, for every i ∈ N, P(si, si+1) >
0. The set of all paths starting in a state s ∈ S is denoted Paths(s). In order to define a
probability measure PrM over suitable sets of paths, we first explain how a measure is
associated with basic sets of paths called cylinder sets, which gather all paths sharing a
given finite prefix. For s0s1 · · · sk a finite sequence of states, we let Cyl(s0s1 · · · sk) = {π ∈
Paths(s0) | s0s1 · · · sk ≺ π} where ≺ is the usual prefix order, and define its measure as
Prs0
M(Cyl(s0s1 · · · sk)) =

∏
0≤i<k P(si, si+1). For s 6= s0, PrsM(Cyl(s0s1 · · · sk)) = 0.

Now PrsM can be extended to a set of reasonable sets of paths, namely the σ-algebra
generated from cylinder sets. This σ-algebra over Paths(M) =

⋃
s∈S(Paths(s)) precisely

consists of the smallest collection of sets of paths in M that contains the empty set, all
Cyl(s0s1 · · · sk) for any finite sequence s0s1 · · · sk of states, and is closed under complement-
ation and countable union. The extension of PrsM from cylinders to the σ-algebra they
generate is unique, and we still denote it PrsM. Note that not all sets of paths are measur-
able with respect to PrsM, but the sets we will consider in this paper are simple enough to
avoid such difficulties. We use PrM as an abbreviation of PrιM.

2.2 PCTL
Probabilistic computation tree logic (PCTL) [9] is a probabilistic variant of CTL, where
path quantifiers are replaced by probabilistic operators. PCTL is interpreted over Markov
chains, and one can for example specify that the probability measure of the set of paths
satisfying a given until property exceeds some threshold. Formally, the syntax of PCTL is
given by the following grammar:

I Definition 2 (PCTL syntax). Let AP be a set of atomic propositions. The syntax of a
PCTL formula is:

φ ::= > | a | φ ∧ φ | ¬φ | P./λτ
τ ::= © φ | φ U φ | φ U≤n φ

N. Bertrand, J. Fearnley, and S. Schewe 95

where a ∈ AP is an atomic proposition, ./ is a comparison operator in {<,≤,=,≥, >},
λ ∈ [0, 1] is a rational threshold, and n ∈ N.

Formulas produced by the production rules of φ and τ are called state formulas and path
formulas, respectively. State formulas are also called PCTL formulas. PCTL formulas are
interpreted over Markov chains. The step-bounded until operator has the intuitive semantics
that P./λ(φ U≤n ψ) is true if the probability is ./ λ that “ψ holds within the next n steps,
and φ is true until ψ is true”. Hence, the step-unbounded until formula P./λ(φ U ψ) can be
thought of P./λ(φ U<∞ ψ).

The syntax and semantics of PCTL only differ from those of CTL by using probabilistic
path operators P./λ(© · · ·), P./λ(· · · U · · ·) and P./λ(· · · U≤n · · ·) instead of universal and
existential ones.

I Definition 3 (PCTL semantics). LetM = (S,P, ι, L) be a Markov chain, s ∈ S a state of
M, and φ, φ′ PCTL formulas. We have:
M, s |= > for all s ∈ S,
M, s |= a iff a ∈ L(s),
M, s |= φ ∧ φ′ iffM, s |= φ andM, s |= φ′,
M, s |= ¬φ iffM, s 6|= φ,
M, s |= P./λτ iff Pr sM

(
{π ∈ Paths(s) | π |= τ}

)
./ λ.

Finally, for a path π = s0s1 · · · ∈ Paths(s) and PCTL formulas φ, φ′ we have:
M, π |=© φ iff s1 |= φ,
M, π |= φ U φ′ iff ∃i. si |= φ′ and ∀j < i. sj |= φ,
M, π |= φ U≤n φ′ iff ∃i ≤ n. si |= φ′ and ∀j < i. sj |= φ.

Note that the semantics is well-defined because specified sets of paths are indeed measurable.
We use the usual shorthand notations known from CTL, such as ♦ φ ≡ > U φ and � φ ≡
¬♦ ¬φ. Using duality of eventually and always operators and the duality of lower and
upper bounds of our probabilistic path operators, we can, for example, express P≤λ(� φ) ≡
P≥1−λ(♦ ¬φ).

3 Setting and problem statement

The model checking problem for PCTL over Markov chains is known to be solvable in
polynomial time [9]. In contrast to this, satisfiability, that is, the decision problem that asks
whether or not a formula has a model, is a long standing open problem for PCTL. Only
recently, satisfiability for the restricted fragment of qualitative PCTL, where thresholds can
only take value 0 or 1, has been shown to be decidable (EXPTIME-complete [4]). Already
this qualitative fragment does not have the finite model property. As an example formula
φ = P>0

(
� (¬a∧P>0©a)

)
is satisfiable (it has a model with infinitely many states) but has

no finite model [4]. Whether or not a formula has a model surely is a challenging theoretical
question, but ultimately not a question of practical interest, especially if all of its models are
infinite. On the contrary, an interesting question in practice is whether or not a formula has
a simple model, where by ‘simple’ one intends reasonably small and implementable, at least.
The problem is then to determine whether or not a formula admits a model with a bounded
number of states. This bounded satisfiability problem [16, 8, 6, 11, 7] has first been studied
in [16] for LTL and distributed architectures, where it is reduced to an SMT problem.

In the context of the probabilistic branching time logic PCTL and Markov chain models,
we advocate that non-implementability can not only result from a large (or even infinite)
state space, but also from the transition probabilities. The representation of arbitrary

CSL’12

96 Bounded Satisfiability for PCTL

01

2

3

1−
√

1
2

1

1−
√

1
2

1−
√

1
2

√
1
2

√
1
2

√
1
2

Figure 1 An irrational model for ψ0.

01

2

3

3

2

1
1
2

1
2

1
2

1
2

1
2

1
2

1

11

1

Figure 2 A simple model for ψ0.

rational or irrational probabilities definitely forms a source of complexity when it comes to
implementing a system described by a model. To illustrate this problem, let us consider
the following PCTL formula over 2 atomic propositions {p, q}, which are used to encode
0 ≡ ¬p ∧ ¬q, 1 ≡ ¬p ∧ q, 2 ≡ p ∧ ¬q, and 3 ≡ p ∧ q.

ψ0 :=1 ∧ P=1�

((
0→ P=1(© 0)

)
∧
(

1→ P=1(© (2 ∨ 0))
)
∧
(

2→ P=1(© (3 ∨ 0))
)
∧
(

3→ P=1(© (1 ∨ 0))
)

∧
(

1→ P=1/2(1 ∨ 2 U 3)
)
∧
(

2→ P=1/2(2 ∨ 3 U 1)
)
∧
(

3→ P=1/2(3 ∨ 1 U 2)
))

The formula specifies that the initial state is labelled with 1, and the 0 states form a sink.
It also requires that all successors of states labelled 1 are labelled 2 or 0 (and similarly
for 2 and 3); and last, with probability exactly 1

2 , from the state labelled 1, only 1 or 2
are visited until the state labelled 3 is reached (symmetrically for 2 and 3). A model with
four states for this formula is represented in Figure 1. Although the bounds in ψ0 are all
rationals (as required by the PCTL syntax), the formula forces every four-state model to
have irrational probabilities on their edges. Indeed, the model shown in Figure 1 is the only
four state model of ψ0. The first two lines of ψ0, for example, require that the initial state
is labelled with 1, and that all successors of states labelled with 0 must also be labelled
with 0. Also, successors of state 1 are among 0 and 2, and so forth. Moreover, letting
P(i, j) be the probability to transition from state i to state j, the three last conjuncts
in ψ0 imply that P(1, 2) · P(2, 3) = P(2, 3) · P(3, 1) = P(3, 1) · P(1, 2) = 1

2 . This yields
P(1, 2) = P(2, 3) = P(3, 1) =

√
1
2 . We emphasise that models with irrational probabilities

are not implementable, because they require infinite memory.
If we use the same example formula ψ0 but allow for a larger number of states, then

the specification becomes easier to satisfy. Seven states suffice for the rational model shown
in Figure 2. This model uses only rational probabilities. Moreover, all transitions carry
the probability 1

2 or 1. If we allow for multi-graphs, then we can split transitions with
probabilities 1 into two transitions with probability 1

2 with the same source and target.
This inspires our definition of simple models: this example model can be represented as a
multi-graph with two (potentially equivalent) outgoing transitions per node, each of which
is taken with probability 1

2 .
Moreover, any rational probability p

q can be written using its binary encoding of the
form 0.vwω with v, w ∈ {0, 1}∗. A transition from state s to state s′ with probability 3

10 , for

N. Bertrand, J. Fearnley, and S. Schewe 97

example, can be written 0.0(1001)ω, and can be encoded by the Markov chain below, where
all transition probabilities are 1

2 :

s s′

We now introduce simple Markov chains (SMCs) and discuss the semantics of PCTL
when applied to simple Markov chains.

I Definition 4 (Simple Markov Chains). A Markov chainM = (S,P, ι, L) is called a simple
Markov chain (SMC) if it satisfies the following.

The state space ofM is finite (|S| ∈ N).
The domain of the probability function P is {0, 1

2 , 1}.
M contains an atomic proposition p∃ that cannot be used in specifications. A state s
is called a real state if p∃ is contained in its label (p∃ ∈ L(s)), and it is called a hidden
state otherwise.
The initial state ι is real, and, from each state, there is a path to a real state.

Intuitively, hidden states are the states used to simulate probabilities that are not 1
2 ,

and the last constraint guarantees that the probability measure of paths that eventually
always stay in hidden states is 0. For the purposes of PCTL, the hidden states should not
be counted towards the truth of a path formula. In particular, the next operator should
refer to the next real state, and the bounded until operator with bound n should refer to an
until that should be satisfied after n real states have been seen. The SMC semantics thus
differs from the standard PCTL semantics in the definition of path formulas, which we now
redefine.

I Definition 5 (SMC Semantics). The semantics of state formulas is as in Definition 3, while
the definition of path formulas changes as follows:
M, π |=SMC © φ iff ∃i. si |=SMC φ and si is real and ∀0 < j < i. sj is hidden,
M, π |=SMC φ U φ′ iff ∃i. si |=SMC φ′ and si is real and ∀j < i. either sj |=SMC φ or
sj is hidden,
M, π |=SMC φ U≤n φ′ iff ∃i. si |=SMC φ′ and si is real and ∀j < i. either sj |=SMC φ

or sj is hidden and |{j < i | sj is real }| ≤ n.

Given a Markov chain with rational transition probabilities, we have already shown
how an equivalent simple Markov chain can be constructed, by simulating the transition
probabilities with hidden states. On the other hand, every simple Markov chain has an
equivalent Markov chain, which can be obtained by computing the probability of moving
from one real state to the next in the simple Markov chain. Therefore, we obviously have
the following equivalence.

I Proposition 6. For a PCTL formula φ, there is a finite Markov chain M with rational
transition probabilities and M |= φ if, and only if, there is a simple Markov chain M′ that
satisfiesM′ |=SMC φ.

Having only transition probabilities 1
2 and 1 is very convenient in practice, because then

all random choices can immediately be simulated by a device as simple as tossing a fair
coin. The example formula ψ0 and the argumentation above motivate the quest for models
that are simple in two respects: they have a reasonable number of states, and all transition
probabilities are equal to 1

2 or 1. We can now formally state our bounded satisfiability
problem:

CSL’12

98 Bounded Satisfiability for PCTL

I Definition 7 (Bounded satisfiability problem). Input: A PCTL formula φ and a bound
b ∈ N.
Question: Does there exist a simple Markov chain M with at most b states, such that
M |=SMC φ?

For PCTL, the synthesis problem can be solved by a satisfiability algorithm. Suppose
we want a probabilistic environment that gives us proposition p with probability 0.5, and
not p with probability 0.5. Then, we can add the following requirement to our formula:

P=1�
(
P=0.5(©p) ∧ P=0.5(©¬p)

)
.

This can obviously be generalised for multiple input propositions, and non-uniform probab-
ility distributions.

To check whether there is a simple modelM of φ with b states that satisfies a formula can
clearly be done in non-deterministic polynomial time in the size of the related model checking
problem (that is, in the joint size of the model and specification): it can simply guess the
model and then check its correctness in polynomial time. It is also NP hard. Indeed, from
a SAT instance f and a bound b, one can build a formula for which the smallest model is
of size b if f is satisfiable and b + 1 is f is not satisfiable. Intuitively, using bit strings to
encore numbers between 1 and b+ 1, one can force the model to have b different states, and
if f is unsatisfiable, require an extra state.

I Proposition 8. For a given PCTL formula φ and a bound b, the problem of deciding
whether there is a simple modelM withM |=SMC φ that has b states is NP-complete in the
joint size of φ andM.

Moreover, we can also show that approximating the size of a smallest model is NP-hard.
The reason for this is that it is simple to find a PCTL formula for which the smallest model
is of size ≈ 2n, where n is polynomial in the specification. Hence, we can construct a PCTL
formula φ that either requires that a boolean formula ψ is true in the first state, or requires
that we build an exponential model. Therefore, if ψ has a satisfying assignment, then φ has
a model of size 1, otherwise the smallest model of φ has exponentially many sates.

I Proposition 9. It is NP-hard to approximate the size of the smallest model of a PCTL
formula φ within a factor that is polynomial in |φ|.

4 Reduction to an SMT problem

A satisfiability modulo theories (SMT) problem is the decision problem that consists in
determining whether or not a logical formula expressed in boolean logic and using additional
theories is satisfiable. Let φ be a PCTL formula over a set of atomic propositions AP .
Suppose that we wish to solve the bounded satisfiability problem for φ with the bound b. In
this section we will construct a system of SMT constraints that are satisfiable if, and only
if, the formula φ has a model with b states. The size of the SMT formula will be linear in
the number of sub-formulas in φ, and the SMT formula can be constructed in linear time
(assuming that the bounds for bounded until formulas are given in unary). The theories we
use in our SMT constraints are linear real arithmetic and uninterpreted function symbols.
SMT for for this theory is NP-complete.

N. Bertrand, J. Fearnley, and S. Schewe 99

4.1 The model
We begin by introducing the functions and constraints that will define our model. We define
the type States = {1, 2, . . . , b}, with the intention that each integer in States will represent
one state of the model. We define the following functions.

We define the left successor function left : States → States and the right successor
function right : States → States. These functions give the two outgoing transitions from
each of the states. A transition from a state s to a state s′ with probability 1 can be
simulated by setting left(s) = right(s) = s′.
We define the existence function exists : States → B, where exists(s) is true if s is a real
state, and false if s is a hidden state.
For each atomic proposition a ∈ AP , we define a function trutha : States → B, where
trutha(s) indicates that the atomic proposition a is true in state s.

Using the functions we have defined, it is possible to define a model that visits only a
finite number of real states before getting stuck in hidden states. To avoid this, we introduce
a function dist∃ : States→ [0, 1], and the following two constraints:

∀s · exists(s)↔ dist∃(s) = 0,

∀s · ¬exists(s)→
(

dist∃(s) > dist∃(left(s))
)
∨
(

dist∃(s) > dist∃(right(s))
)
.

The first constraint states that dist∃(s) may only be 0 when s is real. The second constraint
states that at each hidden state, the value of dist∃(s) must be strictly larger than either
dist∃(left(s)) or dist∃(right(s)).

We argue that, if the model satisfies these two constraints, then it cannot get stuck in
hidden states. A hidden state s can satisfy the second constraint if, and only if, there is
a finite path from s to a real state. Hence, there is some probability p, with p > 0, to
move from s to some real state. Since this holds for all hidden states, the probability of not
eventually reaching a real state must be 0.

4.2 The formula
For each sub-formula ψ of φ, we associate a function satψ : States → B, where satψ(s) will
be true if and only if state s satisfies ψ. In this section we will describe the constraints that
are placed on satψ.

Non-temporal operators

We begin by giving the constraints for satψ for the case where ψ is a non-temporal operator.
We define the following constraints:

If ψ is an atomic proposition a ∈ AP , then we add the constraint:

∀s · satψ(s)↔ trutha(s). (1)

If ψ is ¬ψ′, then we add the constraint:

∀s · satψ(s)↔ ¬satψ′(s). (2)

If ψ is ψ1 ∧ ψ2, then we add the constraint:

∀s · satψ(s)↔ satψ1(s) ∧ satψ2(s). (3)

CSL’12

100 Bounded Satisfiability for PCTL

Next formulas

We now define the constraints on satψ(s) in the case where ψ is P./λ(© ψ′). It should be
noted that we are only interested in whether ψ′ holds in the next real state, and that we
must account for the fact that several hidden states may be visited before we arrive at a
real state. It is for this reason that we introduce the function valueψ : States → [0, 1]. Our
intention is that this function should give, for each hidden state, the probability that ψ′
holds in the next real state. We define the following constraints on valueψ(s).

∀s · exists(s) ∧ satψ′(s)→ valueψ(s) = 1,
∀s · exists(s) ∧ ¬satψ′(s)→ valueψ(s) = 0,

∀s · ¬exists(s)→ valueψ(s) = 1
2 ·
(

valueψ(left(s)) + valueψ(right(s))
)
.

The first two constraints set the value of a real state s to be either 1 or 0 depending on
whether ψ′ holds at s. The final constraint sets the value of a hidden state to be the average
of the values of its successors. Recall that we have already introduced constraints to ensure
that the system cannot get stuck in hidden states. Therefore, these constraints are sufficient
to force, for each hidden state s, the function valueψ(s) to give the probability that ψ′ holds
at the next real state.

We can now introduce the constraint for satψ(s). This constraint simply checks whether
the probability of ψ′ occurring in the next real state satisfies the bound ./ λ.

∀s · satψ(s)↔ 1
2 ·
(

valueψ(left(s)) + valueψ(right(s))
)
./ λ.

Until formulas

We now define the constraints on satψ(s) in the case where ψ is P./λ(ψ1 U ψ2). Following our
approach for the next operator, we once again define a function valueψ : States→ [0, 1]. Our
intention is that valueψ(s) should give the probability that the until formula ψ is satisfied
at the state s. We place the following constraints on the function valueψ:

∀s · exists(s) ∧ satψ2(s)→ valueψ(s) = 1,
∀s · exists(s) ∧ ¬satψ1(s) ∧ ¬satψ2(s)→ valueψ(s) = 0,
∀s · ¬exists(s) ∨

(
satψ1(s) ∧ ¬satψ2(s)

)
→

valueψ(s) = 1
2 · (valueψ(left(s)) + valueψ(right(s))).

The first constraint sets the probability to 1 for real states that satisfy the right-hand side
of the until, and the second constraint sets the probability to 0 for real states that satisfy
neither the left-hand side nor the right-hand side of the until. The final constraint deals
with real states that only satisfy the left-hand side of the until, and with hidden states. In
both of these cases, we set the probability of the state to be the average of the probability
of its successors.

In contrast to the next operator, the constraints that we have introduced are not sufficient
to capture the probability of an until operator. To see the problem, consider a model in
which ψ1 is satisfied at all states, and ψ2 is not satisfied at any state. Our constraints so
far would allow valueψ(s) to take any value in [0, 1] in such a model. To solve this, we
introduce a distance function distψ : States → [0, 1], which ensures that ψ2 can be reached

N. Bertrand, J. Fearnley, and S. Schewe 101

with non-zero probability.

∀s · exists(s) ∧ satψ2(s)↔ distψ(s) = 0,
∀s · valueψ(s) = 0↔ distψ(s) = 1,
∀s · valueψ(s) 6= 0 ∧

(
¬exists(s) ∨ ¬satψ2(s)

)
→(

distψ(s) > distψ(left(s))
)
∨
(

distψ(s) > distψ(right(s))
)
.

If a state satisfying ψ2 can be reached with non-zero probability from a state s, then it is
clear that we can set distψ(s) < 1. On the other hand, if no state satisfying ψ2 can be reached
from s, then the third constraint cannot be satisfied. Therefore, the second constraint must
be used, which sets distψ(s) = 1, and then correctly sets valueψ(s) = 0.

Having specified the value function valueψ, the constraint for the function satψ simply
compares the value to the bound given by λ:

∀s · exists(s) ∧ satψ(s)↔ valueψ(s) ./ λ.

Bounded until formulas

We now give the constraints for satψ for the case where ψ is P./λ(ψ1 U≤n ψ2). The con-
straints that we introduce here can be seen as a generalisation of the constraints that
are used for next formulas. For each i in the range 0 ≤ i ≤ n, we introduce a function
valueψ,i : States → [0, 1]. The function valueψ,i(s) is intended to give the probability that
ψ1 U≤i ψ2 holds at the state s. We can start by giving a constraint for the function valueψ,0:

∀s · exists(s) ∧ satψ2(s)→ valueψ,0(s) = 1,
∀s · exists(s) ∧ ¬satψ2(s)→ valueψ,0(s) = 0,

∀s · ¬exists(s)→ valueψ,0(s) = 1
2 ·
(

valueψ,0(left(s)) + valueψ,0(right(s))
)
.

Having defined valueψ,0, we can now define valueψ,i inductively. For each i in the range
1 ≤ i ≤ n, we add the constraints:

∀s · exists(s) ∧ satψ2(s)→ valueψ,i(s) = 1,
∀s · exists(s) ∧ ¬satψ1(s) ∧ ¬satψ2(s)→ valueψ,i(s) = 0,
∀s · exists(s) ∧ satψ1(s) ∧ ¬satψ2(s)→

valueψ,i(s) = 1
2

(
valueψ,i−1(left(s)) + valueψ,i−1(right(s))

)
,

∀s · ¬exists(s)→ valueψ,i(s) = 1
2 ·
(

valueψ,i(left(s)) + valueψ,i(right(s))
)
.

The first two constraints deal with the case where ψ2 is true at a real state, and the case
where ψ1 and ψ2 are both false at a real state, respectively. The third constraint deals with
real states at which ψ1 is true, and ψ2 is false. In this case, the probability that ψ1 U≤i ψ2
holds at s is the same as the probability that ψ1 U≤i−1 ψ2 holds in the next real state.
Hence, the third constraint takes the average of valueψ,i−1 over the successors of s. Finally,
the fourth constraint deals with the hidden states. Since moving through a hidden state
does not count towards the step bound of the until, we take an average of valueψ,i over the
successors for the hidden states.

Having defined the function valueψ,i for all i in the range 0 ≤ i ≤ n, we can now define
the function satψ by comparing the value given by valueψ,n with the bound λ.

∀s · exists(s) ∧ satψ(s)↔ valueψ,n(s) ./ λ.

CSL’12

102 Bounded Satisfiability for PCTL

The formula φ

At this point, we have introduced constraints over satψ for every sub-formula of the input
formula φ. Our final task is to ensure that φ itself holds at some real state in the model. To
do this, we arbitrarily pick State 1, and we require that State 1 is real, and that φ holds at
State 1. Hence, to complete our reduction, we add the constraint:

exists(1) ∧ satφ(1).

5 Implementation and results

5.1 Implementation

In this section we describe an implementation of the reduction given in Section 4. In fact,
we implement a slightly simpler version of the reduction. In particular, it would obviously
be inefficient to produce the function satψ for the case where ψ is of the form ¬ψ′, ψ1∧ψ2, or
a for some atomic proposition a ∈ AP . Instead, we carry out the reduction as normal, and
then we iteratively apply the identities given in (1), (2), and (3). For example, we replace
all instances of satψ1∧ψ2 with satψ1(s)∧ satψ2(s). We iterate this procedure until none of the
three identities can be applied.

Our implementation consists of a parser that reads PCTL formulas, performs the re-
duction to SMT, and then outputs the system of SMT constraints. To solve the system of
constraints, we experimented with several prominent SMT solvers, and we found that the
Yices [17] solver was by far the fastest for our inputs. Hence, all the results described in this
section were obtained using Yices-1.0.32 on a machine with a 2.66 GHz Core i7 processor
and 4 GB of RAM. The implementation as well as the examples we report on are available
for download at http://www.csc.liv.ac.uk/~john/static/pctl-smt.tar.bz2.

Our initial intention was to test our techniques against PCTL formulas from the liter-
ature. However, after attempting to find such formulas, we ran into a problem: the PCTL
formulas that we found in the literature are not interesting from the perspective of satisfiab-
ility. Formulas that are given as examples in model checking papers are often very simple,
because the authors are usually interested in the performance when measured in the size
of the system. This meant that most of the formulas that we found had extremely simple
satisfying models. For example, all of the formulas that appear in [14] have 1 state satisfying
models, and as we shall see, these instances are not challenging for our implementation. The
same problem occurs for all other examples that we found in the literature. Therefore, in
the following subsections, we construct two scalable PCTL formulas that can be used to
measure the performance of our implementation.

5.2 The lossy channel example

In this section, we test how well our implementation can construct systems. We define
a formula channelu that represents a lossy channel with u users. For each i in the range
1 ≤ i ≤ u, there is an atomic proposition sendi, which indicates that user i wishes to send a
message, and an atomic proposition deliveri, which indicates that the message belonging to

http://www.csc.liv.ac.uk/~john/static/pctl-smt.tar.bz2

N. Bertrand, J. Fearnley, and S. Schewe 103

41

2

3

∀i·sendi

deliver1

∀i·sendi

deliver2

∀i·sendi

deliver3

∀i·¬sendi

∀i·¬deliveri

Figure 3 A model for channel3.

Users Time (s)

2 0.063
3 0.765
4 12.879
5 18.172
6 8784.490

Figure 4 Experimental results for channelu.

user i has been delivered. The formula channelu is defined to be:

channel1,u := P≥0.1(©
∧

1≤i≤u
¬deliveri)

channel2,u :=
∧

1≤i≤u
P=0.5(© sendi)

channel3,u :=
∧

1≤i≤u

(
sendi → P=1(> U deliveri)

)
channel4,u :=

∧
1≤i≤u

(deliveri →
∧

1≤k≤u,k 6=i
¬deliverk)

channelu := P=1

(
� (channel1,u ∧ channel2,u ∧ channel3,u ∧ channel4,u)

)
.

The formula channel1,u specifies that the channel is lossy: specifically that at least ten
percent of the time the channel should not deliver a message at all. The formula channel2,u
specifies that the users should actually use the channel. It states that, in each step, there
is a fifty percent chance that each user attempts to send a message. The formula channel3,u
states that, once a message has been sent, it should eventually be delivered. Finally, the
formula channel4,u states that the channel may only deliver one message in each step.

The formula channelu has a model with u+ 1 states. For example, in Figure 3, we show
the structure of a model for channel3. The atomic propositions send1, send2, and send3, are
true in all states but state 4. We also have that deliver1 is true in state 1, that deliver2 is
true in state 2, and that deliver3 is true in state 3. Other than these exceptions, the deliveri
atomic propositions are false at all other states.

It is also not difficult to see that the formula channelu cannot have a model with fewer
than u+ 1 states. This is because, with probability 1, each of the sendi atomic propositions
must become true. Once this has occurred, we require at least u + 1 distinct states: since
two messages cannot be delivered at the same time, we require at least one state for each
deliveri, and since the channel is lossy, we require at least one state in which no deliveri is
true.

In the table in Figure 4, we show experimental results for the formula channelu. In each
case, we asked our implementation to find a model with u+1 states for the formula channelu.
These results show that our implementation can construct systems with a small number of
states very quickly. However, the exponential nature of the problem catches up to us quite
quickly, and checking for the existence of a model with 7 states for the formula channel6
already takes more than two hours. The SMT solver was not able to solve the constraint

CSL’12

104 Bounded Satisfiability for PCTL

system for channel7 within a reasonable amount of time. (We stopped the experiment after
a day.)

5.3 A lossy channel with bugs
In this section we study the ability of our implementation to find bugs in specifications. We
define an extension to our lossy channel that allows the system to go down, and we will
require that, if the system does go down, then a number of recovery steps will be taken in
order to restore service. Unfortunately, our formula will have a bug, and our goal is to find
out how well our implementation can find this bug.

Our formula will be called brokenu,r, which represents a lossy channel with u users, and
which can recover from an error in r steps. In addition to the atomic propositions used
by channelu, we add several new atomic propositions. The atomic proposition up indicates
whether the network is up or down. For each j in the range 1 ≤ j < r, there is an atomic
proposition recoverj , that indicates that the network is in the jth step of the recovery
procedure. We will require that each of the recovery propositions must be true before the
system can come back up.

Our formula will reuse the formulas channel1,u and channel4,u from the previous section.
However, we replace the other two formulas with the following:

broken2,u,r :=
∧

1≤i≤u
(up ∧

∧
1≤j≤r

¬recoverj)→ P=0.5(© sendi)

broken3,u,r :=
∧

1≤i≤u

(
up ∧ sendi → P=1(> U deliveri)

)
broken5,u,r :=

∧
1≤i≤u

(¬up→
∧

1≤k≤u,k 6=i
¬deliverk)

The formula broken2,u,r specifies that, if the channel is up, and not in a recovery state,
then users should be able to send messages. The formula broken3,u,r specifies that, if a user
sends a message while the network is up, then that message should be delivered. Finally,
the formula broken5,u,r specifies that, if the network is not up, then no messages can be
delivered.

In addition to these formulas, we also specify the recovery procedure. We define:

broken0
r :=

{
¬up→ P≥0.99(© up) if r = 1,
¬up→ P≥0.99(© recover1) otherwise,

and, for all j in the range 1 ≤ j ≤ r, we define:

brokenjr :=
{

recoverj → P=1(© recoverj+1 ∧
∧

1≤k≤j ¬recoverk) if j < r,
recoverj → P=1(© up ∧

∧
1≤k≤r ¬recoverk) if j = r.

If r = 1, then these formulas specify that the system should recover in one step after it
has gone down. For other values of r, these formulas specify that the system should pass
through each of the recovery states before the channel comes back up. We can now specify
the full formula:

brokenu,r := P=1

(
� (channel1,u ∧ broken2,u,r

∧ broken3,u,r ∧ channel4,u ∧ broken5,u,r ∧
∧

1≤j≤r
brokenjr)

)
.

N. Bertrand, J. Fearnley, and S. Schewe 105

31

2

4

up

¬up, ∀i·sendi

up
recover1

up, recover2

Figure 5 A model for brokenu,3.

Users Time (s)
r = 1 r = 2 r = 3 r = 4

10 0.192 0.376 13.852 89.908
20 0.609 1.643 2.666 72.341
30 0.869 2.723 58.825 278.150
40 1.139 2.153 23.023 167.234
50 1.886 10.695 55.375 336.153
60 4.510 9.624 64.603 502.790
70 6.912 11.622 54.162 216.548
80 7.672 40.855 55.568 370.268
90 4.457 46.538 151.892 565.718

100 12.111 47.440 231.619 1927.258

Figure 6 Experimental results for brokenu,r.

Unfortunately, this formula contains a bug: if the system immediately goes down after
being up, then no messages are ever delivered. Figure 5 shows the structure of a model that
satisfies brokenu,3 for all u. We have that up is satisfied in all states except 2, that recover1
is satisfied in state 3, and that recover2 is satisfied in state 4. The propositions deliveri are
not satisfied in any state, and the propositions sendi are only satisfied in state 2.

We asked our implementation to solve brokenu,r for varying values of u and r. The results
are displayed in Figure 6. These results show a similar scaling with respect to r as was found
for the previous example: as the size of the smallest model increases, our performance gets
progressively worse, and we were unable to obtain results for r = 5 within a reasonable
amount of time. However, these results show that our implementation scales well with
respect to the number of users. This indicates that, while the running time of the procedure
depends strongly on the size of the minimal model, there is a much smaller dependence on
the size of the PCTL formula. Indeed, the formula broken100,r contains over 300 temporal
operators. It is for this reason that we claim that our techniques are particularly suited
for sanity checking, because this application requires us to construct a small model for a
complex formula. These results show that our procedure can handle such situations.

6 Conclusion

In this paper, we have introduced the bounded satisfiability problem, which is a simplification
of the satisfiability problem for PCTL, that restricts consideration to models that can be
implemented. As was expected, bounded satisfiability is NP-complete in the minimal output.
To offset this negative result, we provided a reduction from bounded satisfiability to an SMT
problem, because in practice SMT solvers can often answer large queries.

Our experimental results allow for two interpretations. Our first set of experimental
results shows that the difficulty of finding a solution to the system of SMT constraints
depends strongly on the size of the minimal model. Hence, we consider it unlikely that these
techniques will be able to construct the large systems that would be useful in practice. On
the other hand, our second set of benchmarks showed that the running time of the SMT
solver does not depend strongly on the size of the PCTL formula. Indeed, we were able to
construct systems that satisfy formulas with hundreds of temporal operators. It would seem
that, while our techniques are not able to construct models that are large enough be useful
in practice, they are able to handle the large specifications that may appear in this setting.

CSL’12

106 Bounded Satisfiability for PCTL

This motivates the idea of sanity checking, where a system designer wishes to ensure that
there are no errors in a specification that could lead to a small satisfying model. Our results
indicate that our techniques are capable of providing a sanity checking procedure.

References
1 R. Armoni, L. Fix, A. Flaisher, O. Grumberg, N. Piterman, A. Tiemeyer, and M. Vardi.

Enhanced vacuity detection in linear temporal logic. In Proceedings of the 15th Interna-
tional Conference on Computer Aided Verification (CAV 2003), LNCS 2725, pages 368–380.
Springer, 2003.

2 T. Ball and O. Kupferman. Vacuity in testing. In Proceedings of the Second International
Conference on Tests and Proofs (TAP 2008), LNCS 4966, pages 4–17. Springer, 2008.

3 I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh. Efficient detection of vacuity in ACTL
formulas. Formal Methods in System Design, 18(2):141–163, 2001.

4 T. Brázdil, V. Forejt, J. Kretínský, and A. Kucera. The satisfiability problem for prob-
abilistic CTL. In Proceedings of the 23rd Annual IEEE Symposium on Logic in Computer
Science (LICS 2008), pages 391–402. IEEE Computer Society, 2008.

5 L. M. de Moura, B. Dutertre, and N. Shankar. A tutorial on satisfiability modulo theories.
In Proceedings of the 19th International Conference on Computer Aided Verification (CAV
2007), LNCS 4590, pages 20–36. Springer, 2007.

6 R. Ehlers. Symbolic bounded synthesis. In Proceedings of the 22nd International Conference
on Computer Aided Verification (CAV 2010), LNCS 6174, pages 365–379. Springer, 2010.

7 R. Ehlers. Unbeast: Symbolic bounded synthesis. In Proceedings of the 17th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS
2011), LNCS 6605, pages 272–275. 2011.

8 B. Finkbeiner and S. Schewe. SMT-based synthesis of distributed systems. In Proceedings
of the 2nd Workshop on Automated Formal Methods (AFM 2007), pages 69–76. 2007

9 H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal Aspects
of Computing, 6(5):512–535, 1994.

10 J.-P. Katoen, I. S. Zapreev, E. M. Hahn, H. Hermanns, and D. N. Jansen. The ins and outs
of the probabilistic model checker MRMC. Performance Evaluation, 68(2):90–104, 2011.

11 O. Kupferman, Y. Lustig, M. Y. Vardi, and M. Yannakakis. Temporal synthesis for bounded
systems and environments. In Proceedings of the 28th International Symposium on Theor-
etical Aspects of Computer Science (STACS 2011), LIPIcs 9, pages 615–626.

12 O. Kupferman and M. Y. Vardi. Vacuity detection in temporal model checking. Software
Tools for Technology Transfer, 4(2):224–233, 2003.

13 M. Z. Kwiatkowska, G. Norman, and D. Parker. Prism 4.0: Verification of probabilistic
real-time systems. In Proceedings of the 23rd International Conference on Computer Aided
Verification (CAV 2011), LNCS 6806, pages 585–591. Springer, 2011.

14 M. Z. Kwiatkowska, G. Norman, J. Sproston, and F. Wang. Symbolic model checking
for probabilistic timed automata. In Proceedings of the Joint International Conferences
on Modelling and Analysis of Timed and Fault-Tolerant Systems (FORMATS/FTRTFT
2004), LNCS 3253, pages 293–308. Springer, 2004.

15 M. Purandare and F. Somenzi. Vacuum cleaning CTL formulae. In Proceedings of the 14th
International Conference on Computer Aided Verification (CAV 2002), LNCS 2404, pages
485–499. Springer, 2002.

16 S. Schewe and B. Finkbeiner. Bounded synthesis. In Proceedings of the 5th International
Symposium on Automated Technology for Verification and Analysis (ATVA 2007), LNCS
4762, pages 474–488. Springer, 2007.

17 Yices website: http://yices.csl.sri.com/.

	Introduction
	Preliminaries
	Markov chains
	PCTL

	Setting and problem statement
	Reduction to an SMT problem
	The model
	The formula

	Implementation and results
	Implementation
	The lossy channel example
	A lossy channel with bugs

	Conclusion

