Published in: LIPIcs, Volume 258, 39th International Symposium on Computational Geometry (SoCG 2023)
Egor Gorbachev and Marvin Künnemann. Combinatorial Designs Meet Hypercliques: Higher Lower Bounds for Klee’s Measure Problem and Related Problems in Dimensions d ≥ 4. In 39th International Symposium on Computational Geometry (SoCG 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 258, pp. 36:1-36:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
@InProceedings{gorbachev_et_al:LIPIcs.SoCG.2023.36, author = {Gorbachev, Egor and K\"{u}nnemann, Marvin}, title = {{Combinatorial Designs Meet Hypercliques: Higher Lower Bounds for Klee’s Measure Problem and Related Problems in Dimensions d ≥ 4}}, booktitle = {39th International Symposium on Computational Geometry (SoCG 2023)}, pages = {36:1--36:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-273-0}, ISSN = {1868-8969}, year = {2023}, volume = {258}, editor = {Chambers, Erin W. and Gudmundsson, Joachim}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2023.36}, URN = {urn:nbn:de:0030-drops-178861}, doi = {10.4230/LIPIcs.SoCG.2023.36}, annote = {Keywords: Fine-grained complexity theory, non-combinatorial lower bounds, computational geometry, clique detection} }
Feedback for Dagstuhl Publishing