Intro to ASPNET MVC 4
with Visual Studio (Beta)

Rick Anderson and Scott Hanselman

Step-by-Step

Microsoft

Intro to ASP.NET MVC 4 with
Visual Studio (Beta)

Rick Anderson and Scott Hanselman

Summary: This tutorial will teach you the basics of building an ASP.NET MVC Web
application using Microsoft Visual Studio 11 Express Beta for Web, which is a free
version of Microsoft Visual Studio.

Category: Step-By-Step

Applies to: ASP.NET MVC 4 Beta, Visual Studio 11 Beta
Source: ASP.NET site (link to source content)

E-book publication date: May 2012

115 pages

http://www.asp.net/mvc/tutorials/mvc-4/getting-started-with-aspnet-mvc-4-and-visual-studio-2011/intro-to-aspnet-mvc-4�

Copyright © 2012 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Microsoft and the trademarks listed at
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx are trademarks of the
Microsoft group of companies. All other marks are property of their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and events
depicted herein are fictitious. No association with any real company, organization, product, domain name, email address,
logo, person, place, or event is intended or should be inferred.

This book expresses the author's views and opinions. The information contained in this book is provided without any
express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will
be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx

Contents

LCT] a [gY =] =1 o (=T S 3
What YOU'll BUII ...ttt 3
SKIIS YOU'II LEAIM ...t 5
GETEING STAMEU ...t 6
Creating Your First APPlICationcccccviiiiiiiieieeece e 7

AdAING @ CONTIOIIET ...ttt 13

AAAING @ VIBW ..ottt ettt 20
Changing Views and LayOut PAgesc.ccueieirieiiiiieieeeeeeeee e 25
Passing Data from the Controller to the VIeW.........ccccveiiincincniiicceccce 31

AdAING @ MOAE ...ttt 37
AddINg MOAEl ClaSSES.......oiuiriiriiiiieiieieeeee et 37
Creating a Connection String and Working with SQL Server LocalDBc.cccooeiieienenns 41

Accessing Your Model's Data from @ Controller............ocoiireinininineinecscceceeeseeeee 43
Creating @ MOVIE ..ottt 46
Examining the Generated COOE........ooiiiiiiiiiiieiee e 48
Strongly Typed Models and the @model Keyword...........ccccooieieiiiiiiiiiceeeeeeeeas 49
Working with SQL Server LOCaIDBcoiiiiiiiiieeeeeeeeeee e 53

Examining the Edit Methods and Edit VIEWc.ccooiiiiiiiiiiceeee e 58
Processing the POST REQUEST........ccvriiiiiriiieieeeesese st 65
Adding a Search Method and Search VIewcccooiiiiiiiiiiicceeeee e 67
Displaying the SearchIndex FOIM.........ccooiiiiiiiiiic e 67
Adding Search DY GeNIe ..o 77
Adding Markup to the SearchIndex View to Support Search by Genre............ccccevvrvrvennene. 79

Adding a New Field to the Movie Model and Table...........cccociiiiiininiineee 80
Adding a Rating Property to the Movie Model...........ccccooiiiiiiiiieee e 80
Managing Model and Database Schema Differences............cccoevvrineineniiincnnincnceee, 82

Automatically Re-Creating the Database on Model Changes...........cccoceeviniininiincncncnee. 85

Adding Validation to the Modelccuiiiiiiie e 95

Keeping ThiNgs DRY ...ttt 95
Adding Validation Rules to the Movie Modelcccoiriiiiiiiiiii e 95
Validation Error UTin ASP.INET MVCociiiiiiiiicieeeeeeee et 97
How Validation Occurs in the Create View and Create Action Methodccccccveveiennnene. 100
Adding Formatting to the Movie Model...........ccooiiiiiiiiii e 108
Examining the Details and Delete Methods...........cooviiiiiiiiiiie e 111
Examining the Details and Delete Methodscooeiiiiiiiiiie e 111

WIAPPING U oottt ettt 113

Getting Started

By Rick Anderson and Scott Hanselman

This tutorial will teach you the basics of building an ASP.NET MVC Web application using Microsoft Visual
Studio 11 Express Beta for Web, which is a free version of Microsoft Visual Studio. Before you start, make sure
you've installed the prerequisites listed below. You can install all of them by clicking the following link: Web

Platform Installer.

If you're using Visual Studio 11 Beta instead of Visual Studio 11 Express Beta for Web , install the prerequisites

by clicking the following link: Web Platform Installer

A Visual Web Developer project with C# source code is available to accompany this topic. Download the C#

version.

What You'll Build

You'll implement a simple movie-listing application that supports creating, editing, searching and listing movies
from a database. Below are two screenshots of the application you'll build. It includes a page that displays a list

of movies from a database:

http://www.microsoft.com/web/gallery/install.aspx?appid=VWD2010SP1Pack
http://www.microsoft.com/web/gallery/install.aspx?appid=VWD2010SP1Pack
http://www.microsoft.com/web/gallery/install.aspx?appid=VWD2010SP1Pack
http://code.msdn.microsoft.com/site/search?f%5B0%5D.Type=User&f%5B0%5D.Value=Rick_Anderson&f%5B0%5D.Text=Rick_Anderson&sortBy=Date
http://code.msdn.microsoft.com/site/search?f%5B0%5D.Type=User&f%5B0%5D.Value=Rick_Anderson&f%5B0%5D.Text=Rick_Anderson&sortBy=Date

I httpifflocalhostl23dmc O = B & X || SearchIndex - Movie ... X N ok Lt

Ll

_ ==

Register Login

I . ~] F
I 114 -
nnome DLIT Lontact

Searchlndex

Create Mew

Genre: All * Title: ghost

Title ReleaseDate Genre Price
Ghostbusters 3/13/1984 12:00:00 AM Comedy 8.99 Edit | Details | Delete
Ghostbusters 2 2/23/1986 12:00:00 AM Comedy 9.99 Edit | Details | Delete

m

2 2012 - My ASP.NET MVC Application

The application also lets you add, edit, and delete movies, as well as see details about individual ones. All data-

entry scenarios include validation to ensure that the data stored in the database is correct.

| Edit - Mowie &pp

&« C | @ localhostsd148/Movies/Edit/2

Edit
Title

izhosthusters

ReleaseDate

W N

Register Login

Home About Contact

ahc

The field ReleaseDate must be a date.

Genre

Comedy

Price

EX

The field Price must be a number.

Save

Back to List

B 2012 - My ASPMET MWC Application

Skills You'll Learn

Here's what you'll learn:

e How to create a new ASP.NET MVC project.

How to create ASP.NET MVC controllers and views.
How to create a new database using the Entity Framework Code First paradigm.
How to retrieve and display data.

How to edit data and enable data validation.

Getting Started

Start by running Visual Web Developer 11 Express Beta("Visual Web Developer" or VWD for short) and select

New Project from the Start page.

Visual Web Developer is an IDE, or integrated development environment. Just like you use Microsoft Word to

write documents, you'll use an IDE to create applications. In Visual Web Developer there's a toolbar along the

top showing various options available to you. There's also a menu that provides another way to perform tasks

in the IDE. (For example, instead of selecting New Project from the Start page, you can use the menu and

select File>New Project.)

P

o9 Start Page - Microsoft Visual Studio 11 Express Beta for Web = EE =

File Edit “iews Debug Tearn Tools UnitTest Window Help Quick Launch (Crel +00 pe

| B-@ 9| psor-a[o .
ai Start Page + X » 00 SOLUTIOM EXPLORER = 3 X
'9 * F L}
= Microsoft* . © |
= O Visual Studio 11 gets

Express for Web
Latest sra
News

i Mew Project.., Mlewe Wifeb Site,.,

Get Started 8 OpenProject.. Open Web Site..,

m Recent Projects

Close page after project load

[¥] Show page on startup
SOLUTION Ex.. DATABASE E...

Ready

Creating Your First Application

You can create applications using either Visual Basic or Visual C# as the programming language. Select Visual
C# on the left and then select ASP.NET MVC 4 Web Application. Name your project "MvcMovie" and then
click OK.

Mew Project
I Recent [.NET Framewark 4.5 b | Sort by [Default b | = [
4 Tnstalled c
5“_] ASP.NET Web Forms &pplication Wisual C#
4 Templates
! : c
istig R s P™"1 ASP.MET MYC 3 Web Application Visual C#
4 Visual C# &
il LSPUNET MAC 4 eb Applicati Visual C#
AsEL WVINIC A WiYeh Application Visual L
Web pplicatian isua
Cloud c#
Silverlight 5“_] ASP.MET Ermpty Web Spplication Visual C#
Test c#
WACF @ SEP.MNET Dyniarmic Data Entities Web Spplication Wisual C#
=
Other Project Types -
Samples EE SEPMET AJAX Sepser Cortral Wisual CH#
B Online s
EE AEPMET ALY Server Control Extender Wisual CH#
Cci
EE ASPMET Sepver Control Wisual C#
Marne: bl bdonvie
Location: Civiehs -
Solution narme: hf:lvcf\dnuie

In the New ASP.NET MVC 4 Project dialog box, select Internet Application. LeaveRazor as the default view

engine.

New ASP.NET MVC 4 Project

Project Ternplate

Zelect a ternplate:

Description:

F:# an- F:#

el @©d e

Empty Internet Intranet
A Application

p=c st |

el e
Wieb APT Single Page
Spplication

=]

el

Fobile
Spplication

& default ASP.MET MWC 4 project with an | =
account controller that uses forms
authentication,

Wieww engine:

Fazaor -

Create a unit test project

Test project narme:

Test frarmeweark:

Additional Info

OF] | Cancel

Click OK. Visual Web Developer used a default template for the ASP.NET MVC project you just created, so you

have a working application right now without doing anything! This is a simple "Hello World!" project, and it's a

good place to start your application.

59 MvcMovie - Microsoft Visual Studic 11 Express Beta for Web = & e
File Edit Wiew Project Debug Tearm Tools UnitTest Window Quick Launch {Ctrl +0) P
Help
s - T | b Internet Explarer = Debug - | Aa_: [t
HomeController.cs & H X - = SOLUTION EXPLO,, = @ X
‘I:Mchnvie.Cuntrnllers.HnmECDnt - @ Index - f;ﬁ' a & | N
Elusing System; =+ Search Salution Explorer { P =
using System.Collections.Generic; - ”
using System.Ling; — @ Mchuwe.
using System.Web; b & Properties
using System.Web.Mvc; [=@ References
M 2pp Data
Flnamespace MvcMovie.Controllers il Content
J 1 . i €) b Ml Controllers
E §uh11c class HomeController : Controller b ol Images
= public ActionResult Index() E & MD_dEh
I b oMl Scripts
ViewBag.Message = "Modify this template t« b Ml Views
&[] favicon.ico
return View(); b @41 Global.asax
] 242 packages.config
b ay® Web.config
E public ActionResult About()
1 | 5]
ViewBag.Message = "Your gquintessential app SOLUTIONE... DATABASE E...
2t PROPERTIES s w III' b
return View();
T
E public ActionResult Contact()
1
ViewBag.Message = "Your guintessential cor
return View():
1
¥
i
100% = + m | 3
Ready

From the Debug menu, select Start Debugging.

20 MvcMovie - Microsoft Visual Studio 11 Express Beta for Web — [E] ||t
File Edit Miew Project Debug Team Toals UnitTest Window Quick Launch (Cirl+0) 2
Help P Start Debugging F&
| B - & B % Ruild MvcMovie Debug ~ | M _i [
Hu:umeliu:un{:ru:uller.cs i 8 3 Ga Steplnto F11 » 0 SOLUTION EXPLO.., = @ X
#3 havchdovie Contrallers H & Step Over F10 . fat & ‘-'}| :
“lusing System; + Search Solution Explarer { 2~
using System.Col . -
using System.Lin Mind o b — &@] M?I:I'l.l'luwe.
using System.Web b & Froperties
using System.Web b =B References
M App_Data
—Inamespace MwvcMov Import DataTips .. i ml Content
1 : ; b M Controllers
o public class Options and Settings... b ol Images
1 P & hechdovie Properties.., b ol Models
= Fluhllc ALLIUNRESULL lnuexy) = :
[bl Scripts
ViewBag.Message = "Modify this template b Ml Views
&[] faviconico
return View(); b @gd Globalasax
1 ay® packages.config
b ay® Web.config
o public ActionResult About()
1 4
ViewBag.Message = "Your gquintessential apj SOLUTION E.. DATABASE E...
it PROPERTIES s = l'll. xx
return View();
h
o public ActionResult Contact()
1
ViewBag.Message = "Your gquintessential co
return View();
h
_ ¥
¥
100% = . b
Ready

-

Notice that the keyboard shortcut to start debugging is F5.

F5 causes Visual Web Developer to start IIS Express and run your web application. Visual Web Developer then
launches a browser and opens the application's home page. Notice that the address bar of the browser says
localhost and not something like example.com. That's becauselocalhost always points to your own local
computer, which in this case is running the application you just built. When Visual Web Developer runs a web
project, a random port is used for the web server. In the image below, the port number is 41788. When you run

the application, you'll probably see a different port number.

'MVC Movie -
Home About Contact

Home Page. Modify this template to jump-start
your ASP.NET MVC application.

We suggest the following:

Configure ASP.NET Membership
ASP.NET membership gives you a built-in way to create, store, and validate user credentials
(authentication). By default, membership works with a local instance of S5QL Server, but you can + |

Right out of the box this default template gives you Home, Contact and About pages. It also provides support
to register and log in, and links to Facebook and Twitter. The next step is to change how this application works

and learn a little bit about ASP.NET MVC. Close your browser and let's change some code.

Adding a Controller

MVC stands formodel-view-controller. MVC is a pattern for developing applications that are well
architected, testable and easy to maintain. MVC-based applications contain:
e Models: Classes that represent the data of the application and that use validation logic to enforce
business rules for that data.

e Views: Template files that your application uses to dynamically generate HTML responses.

e Controllers: Classes that handle incoming browser requests, retrieve model data, and then specify
view templates that return a response to the browser.

We'll be covering all these concepts in this tutorial series and show you how to use them to build an
application.

Let's begin by creating a controller class. InSolution Explorer, right-click theControllersfolder and then
selectAdd Controller.

Contraller...
Run Recipe...
"i:l Ml Therm,.,
7 Existing Itern...
Sdd ASPMET Folder
‘Ml Mew Folder

Ctel+hd, Crrl+C

Ctrl+Shift+48,
Shift+ A+ 0

&

D <l @ o

b4
gl

>
1
‘-)
2

Wiewy in Browwser (Internet Explorer)
Browese Wifith...
Convert to Yifeb Application

Sdd
Scope ta This

M e Wiews

Get Latest Wersion (Recursive)
Get Specific Wersian,.,

Check Out for Edit...

Wiewy History

Exclude From Project
Cut
Copy

Delete

Renarme
Open Folder in Windows Explarer

Properties

[=lle =

Cuick Launch (Ctrl+0))

» SOLUTION EXPLO., » O -

- @& 28

T Search Solution Explarer | ol
<& MvcMaovie
P &S Properties
p =B References
M 2pp_Data
i Ml Content

4 = Controllers
el + Shift+40 SccountContrall
HormeContraller.
ages
adels
b ripts
s
dconiico
abal.asax
ckages.config
zh.config
Ctrl+X
Ctrl+0C
Del
<+Enter

Name your new controller "HelloWorldController". Leave the default template asEmpty controllerand

clickAdd.

Controller name:

?HelluWananntruller{ |

Scaffolding options

Termplate:
|Empty contraller)
Moaodel class:
| x|
Data context class
| 2]
Wiews:
|N|:|ne "| [Advanced Options.., l

add || concel |

Notice inSolution Explorerthat a new file has been created namedHelloWorldController.cs. The file is
open in the IDE.

=3 MvcMovie - Microsoft Visual Studio 11 Express Beta for Web

Flusing System;
using System.Collections.Generic;
using System.Ling;
using System.Web;
using System.Web.Mvc;

—Inamespace MvcMovie.Controllers

Coll

1
= public class HelloWorldController : Controller
1
= 'y
// GET: /HelloWorld/
= public ActionResult Index()
1
return View();
¥
_ ¥
¥
100 % = « 1
Ready Llnl

File Edit “iew Project Debug Tearn Tools Unit Test Méindow Help
e | i = - [| | P Internet Explorer = Debug
HelloWarldControllercs B X Muchlowie® =
‘I:Mchwie.Cnntrullers.HEIIDWDrldi -~ @ Index) -
Y
=

=)

Quick Launch (Ctrl+01) 2
= |f’ :EE | :55:
s SOLUTION EXPLORER &= = O X

aaer s "
Search Solution Explarer (Ctrl+:) P~

B MvcMovie
b @ Properties
[=B References
M App_Data
[+ Ml Content
#ml Contrallers
@C* AccountController.cs
+ =3 HelloWiarldContraller.cs
&C* HomeControllercs
M Images
M hodels
M Gcripts

b — s~

M Views
&) faviconico
B Global.asax
Y8 packages.config
b ay® Web.config

w

SOLUTION EXP... DATABASE EXP...

Chl NS

Replace the contents of the file with the following code.

usingSystem.Web;
usingSystem.Web.Mvc;

namespaceMvcMovie.Controllers

{
publicclassHelloWorldController:Controller

{
//
// GET: /HelloWorld/

publicstringIndex()
{

return“This is my default action...";

}

//
// GET: /HelloWorld/Welcome/

publicstringWelcome()

{

return"This is the Welcome action method...";
}

}

}

The controller methods will return a string of HTML as an example. The controller is
namedHelloWorldControllerand the first method above is namedIndex. Let's invoke it from a browser.
Run the application (press F5 or Ctrl+F5). In the browser, append "HelloWorld" to the path in the address
bar. (For example, in the illustration below, it'shttp.//localhost:1234/HelloWorld.) The page in the browser
will look like the following screenshot. In the method above, the code returned a string directly. You told
the system to just return some HTML, and it did!

| localhost1234/HelloWorld ~

<« C @ localhost1234/HelloWorld w N

This 1z my default action. .

ASP.NET MVC invokes different controller classes (and different action methods within them) depending
on the incoming URL. The default URL routing logic used by ASP.NET MVC uses a format like this to
determine what code to invoke:

/[Controller]/[ActionName]/[Parameters]
The first part of the URL determines the controller class to execute. So/HelloWorldmaps to the
HelloWorldControllerclass. The second part of the URL determines the action method on the class to

http://localhost:1234/HelloWorld

execute. So/HelloWorld/Indexwould cause theIndexmethod of theHelloWorldControllerclass to
execute. Notice that we only had to browse to/HelloWorldand theIndexmethod was used by default. This
is because a method named Indexis the default method that will be called on a controller if one is not
explicitly specified.

Browse tohttp://localhost:xxxx/HelloWorld/Welcome. TheWelcomemethod runs and returns the string "This
is the Welcome action method...". The default MVC mapping
is/[Controller]/[ActionName]/[Parameters]. For this URL, the controller
isHelloWorldandWelcomeis the action method. You haven't used the[Parameters]part of the URL yet.

(o< B e
@ localhost B s

BD
a
b

-
O 5
o] | 2 std3246/HelloWorld/Welcome =

s

This is the Welcome action method. ..

Let's modify the example slightly so that you can pass some parameter information from the URL to the
controller (for example,/HelloWorld/Welcome?name=Scott&numtimes=4). Change yourWelcomemethod
to include two parameters as shown below. Note that the code uses the C# optional-parameter feature to
indicate that the numTimesparameter should default to 1 if no value is passed for that parameter.

publicstringWelcome(string name,int numTimes =1){
returnHttpUtility.HtmlEncode("Hello "+ name +", NumTimes is: "+ numTimes);

}

Run your application and browse to the example URL
(http://localhost:xxxx/HelloWorld/Welcome?name=Scott&numtimes=4). You can try different values
fornameandnumtimesin the URL. The ASP.NET MVC model binding system automatically maps the named
parameters from the query string in the address bar to parameters in your method.

http://localhoost:xxxx/HelloWorld/Welcome
http://odetocode.com/Blogs/scott/archive/2009/04/27/6-tips-for-asp-net-mvc-model-binding.aspx
http://localhost:xxxx/HelloWorld/Welcome?name=Scott&numtimes=4

| localhostil234/HelloMéorld, =

&= C | @ localhost1234/MHelloWorldfWel come?name =Scott&numTimes=4 S5 | W\

Hello Scott, MumTimes 12: 4

In both these examples the controller has been doing the "VC" portion of MVC — that is, the view and
controller work. The controller is returning HTML directly. Ordinarily you don't want controllers returning
HTML directly, since that becomes very cumbersome to code. Instead we'll typically use a separate view
template file to help generate the HTML response. Let's look next at how we can do this.

Adding a View

In this section you're going to modify the HelloWorldController class to use view template files to cleanly

encapsulate the process of generating HTML responses to a client.

You'll create a view template file using theRazor view engine introduced with ASP.NET MVC 3. Razor-based
view templates have a.cshtml file extension, and provide an elegant way to create HTML output using C#. Razor
minimizes the number of characters and keystrokes required when writing a view template, and enables a fast,

fluid coding workflow.

Start by creating a view template with the Index method in theHelloWorldController class. Currently the
Index method returns a string with a message that is hard-coded in the controller class. Change the Index

method to return a View object, as shown in the following code:

publicActionResultIndex()
{
returnView();

}

The Index method above uses a view template to generate an HTML response to the browser. Controller
methods (also known asaction methods), such as the Index method above, generally return anActionResult (or a

class derrived fromActionResult), not primitive types like string.

In the project, add a view template that you can use with the Index method. To do this, right-click inside the
Index method and clickAdd View.

public class HelloWorldController : Controller

1
o
/Y GET: /HelloWorld/

public ActiocnResult Index()

{ return View(); Add View,.,

¥ B GoToWiew

o Fefactor 3
J{ GET: /Hellolorld/ Organize Usings ,
public string Welcom{ = Comment Selection Ctel +k, Ctrl+C

http://weblogs.asp.net/scottgu/archive/2010/07/02/introducing-razor.aspx
http://rachelappel.com/asp.net-mvc-actionresults-explained
http://msdn.microsoft.com/en-us/library/system.web.mvc.actionresult.aspx
http://msdn.microsoft.com/en-us/library/system.web.mvc.actionresult.aspx

The Add View dialog box appears. Leave the defaults the way they are and click the Add button:

[Add View 3]

View name:
View engine:

| Razor (CSHTML) -

Create a strongly-typed view

Model class:

| -

Scaffold termplate:
!Erru:]‘q,.r - | [/] Reference script libraries

Create as a partial view

Use a layout or master page:

(Leave emnpty if it is set in a Razor _viewstart file)

ContentPlaceHolder ID;

|Ma|'r1C|:|ntent |

The MvcMovie\Views\HelloWorld folder and the MvcMovie\Views\HelloWorld\Index.cshtml file are created. You

can see them in Solution Explorer:

#i SOLUTION EXPLORER =+ R X

aaem s "
Search solution Explarer (Ctrl+7) P~

+E@] MvcMovie

b & Properties
[=W References
M fpp_Data
M Content
M Controllers
M Images

M tadels

M Ecripts

ml ies

- Ml Account
4 gml Hella¥arld

k ¥V OV OV OV W

+E Index cshtml
[Ml Home
[Wl Shared

&0E _MiewStart.cshtrml
ay® vieb.config
&[] faviconico
b @& Globalasax
EY® packages.config
b ay® Web.config

The following shows the Index.cshtml file that was created:

=0 MuchMovie - Microsoft Visual Studio 11 Express Beta for Web
File Edit ‘iew Project

o-ol@-ame

Index.cshtml =

Debug Tearn Tools
| P Internet Explorer =

Uit Test Window Help
Debug

=8 | BO 5
Quick Launch (Ctrl+0) Pl

-

0 SOLUTION EXPLORER L

@

ViewBag.Title = "Index";
X

¢h2>Index</h2>

100 %

=l Source

Ready

1--'|

EI “hi=

L& Col ¥

]

aaer s

Search Solution Explorer (Ctrl+:) P~

<] MvcMovie
b &M Properties
P

[o [

=B References
M App_Data
M Content
M Controllers
M Images
M rdadels
M Gcripts
i Wiews
ol Account
4 aml HelloWarld
@] Index.cshtml
I M Home
ol Shared
&1 Wiewstart.cshtml
2y Weh.config
&[] faviconico
b @gd Globalasax
Y2 packages.config
b G¢® \ifeb.config

m

| T T T T

0

SOLUTION EXP... DATABASE EXP..

Chy INS

Add the following HTML under the <h2> tag.

<p>Hello from our View Template!</p>

The complete MvcMovie\Views\HelloWorld\Index.cshtml file is shown below.

@{
ViewBag.Title = "Index";

<h2>Index</h2>

<p>Hello from our View Template!</p>

In solution explorer, right click the Index.cshtml file and selectView in Page Inspector.

s SCLUTION EXPLORER = = O %

-
= QaaR "
F.
—1 Search Solution Explarer (Crrl+ SO =
MwcMovie
B S Properties
P =B References
[| app_Data
b Ml Conkent
b M Controllers
b Ml Images
b Ml Models
b Ml Scripts
4 gl Views
bl account
4 @l HelloWwarld
[zt
(') Open
Cpen wWith...
l
Wiew Markup
&k Yiew in Page Inspectar
@ Check Accessibility. ..
Scope ko This
M Wiew
4 Add files to Source Control
Exclude From Project
Moo Chrl+
|:'|1 Copy Chrl+iC
> Delete Dl
I Rename
& Properties Alt+-Enker

ThePage Inspector tutorial has more information about this new tool.

http://asp.net/mvc/tutorials/mvc-4/using-page-inspector-in-an-mvc-application-in-visual-studio-11-beta

Alternatively, run the application and browse to the HelloWorld controller (http.//localhost:xxxx/HelloWorld).
The Index method in your controller didn't do much work; it simply ran the statement return View(), which
specified that the method should use a view template file to render a response to the browser. Because you
didn't explicitly specify the name of the view template file to use, ASP.NET MVC defaulted to using the

Index.cshtml view file in the \Views\HelloWorld folder. The image below shows the string hard-coded in the

view.
<« C @ localhostd1778/HelloWarld e A

| I .

Register Login

Home About Contact

m

Index

Hello from our View Templatel

@ 2012 - My ASP.NET MYC Application [Ea m

Looks pretty good. However, notice that the browser's title bar shows "Index My ASP.NET A" and the big link on
the top of the page says "your logo here." Below the "your logo here." link are registration and log in links, and

below that links to Home, About and Contact pages. Let's change some of these.

Changing Views and Layout Pages

First, you want to change the "your logo here." title at the top of the page. That text is common to every page.
It's actually implemented in only one place in the project, even though it appears on every page in the
application. Go to the /Views/Shared folder in Solution Explorer and open the _Layout.cshtml file. This file is

called a layout page and it's the shared "shell" that all other pages use.

http://localhost:xxxx/HelloWorld

= MvcMovie - Microsoft Visual Studio 11 Express Beta for Web =N =R =<

File Edit “iew Project Debug Team Tools UnitTest Window Ciuick Launch 0kl +04 el

Help

- B a | b Internet Explarer - Debug - | 3. [t ‘B3> L

_Layoutcshtml @ R 2 Thdexcshiml @ ~ % SOLUTION EXPLORER = O X
k1DOCTYPE html> = 4 a ,,-_r| &

-I<html lang="en"> . :

- chead s — Zearch Solution Explorer (Ctr 2=
<meta charset="utf-8" /> &8 MvcMovie
<titlex@iViewBag.Title - My ASP.NET MVC Applica I &M Propetties
<link href="~/favicon.ico” rel="shortcut icon™ b =N References
<link I'|r'ef="@System.web.Gptimizaticln,Bun-:l:-_ETa!:ul Ml ~pp Data
<link href="{@System.Web.0Optimization.BundleTab

. S S, : | il Content
<script src="{@System.Web.Optimization.BundleTa|s
<meta name="viewport" content="width=device-wi b M Controllers
</head> M Images

a <body> bl Models

= <headers b Ml Scripts

- <div class="content-wrapper"”: 4 ol Miewrs

= <div class="float-left"> b mll Account

<p class="site-title":@Html.Action — b ol Hellovirorld

_ <fdive b ol Home

= <div class="float-right":

= <section id="login": 4 il Shared

fiHtml.Partial{" LoginPartial") arel _Layout.cshtrl
</section> &3] _LaoginPartial.cshtrm
= <nav: &0E] Error.cshtml

= <ul id="menu":> @E1 _Miewstart.cshtml

<1lix@Html.ActionLink("Home a¥® ‘Web.canfig
<lix@Html.ActionLlink("Abou a[) favicon.ico
<lix@Html.Actionlink(" Cont
ha P @gd Globalasax
Sinaan ay® packages.config
< /dives b ay® Web.config
<fdive
</header:

z <div id="body">
{iRenderSection("featured”, required: false
= <section class="content-wrapper main-conte
fRenderBody ()

100% = [} [3

El Source ‘| m b

ERROR LIST OQUTRUT FIND RESULTS 1
Feady Lnl Coll Chl N3

Layout templates allow you to specify the HTML container layout of your site in one place and then apply it
across multiple pages in your site. Find the@RenderBody () line. RenderBody is a placeholder where all the
view-specific pages you create show up, "wrapped" in the layout page. For example, if you select the About link,

the Views\Home\About.cshtml view is rendered inside the RenderBody method.

Change the site-title heading in the layout template from "your logo here" to "MVC Movie".
<divclass="float-left">

<pclass="site-title">@Html.ActionLink("MVC Movie", "Index", "Home")</p>

</div>

Replace the contents of the title element with the following markup:

<title>@ViewBag.Title - Movie App</title>

The ViewBag is a zzz (dict object) Run the application and notice that it now says "MVC Movie ". Click theAbout
link, and you see how that page shows "MVC Movie", too. We were able to make the change once in the layout

template and have all pages on the site reflect the new title.

http://msdn.microsoft.com/en-us/gg618478

| About - Movie 2pp

L C @ localhost41778/Home/About kil §
| .

Register Login

Home About Contact|®

About. Your quintessential app
description page.

Lorem ipsum dolor sit amet, consectetur adipisang Aside Title

elit. Proin luctus tinddunt justo nec tempor, Aliguam

erat wolutpat. Fusce fadlisis ullamcorper conseguat. Fusce facilisis
Westibulum non sapien lectus, Mam mi augue, ullarm corper

posuere at tempus vel. dignissim witae nulla, Mullam conseguat,

at quam eu sapien mattis ultrices, Quisgue guis leo Vestibulum non

mi, at lobortis dolor, Mullam scelerisgue facilisis sapien lectus, Mam
placerat, Fusce a augue erat. malesuada euismod dui, mi augue, posuere
Diuis iaculis risus id felis volutpat elementum. Fusce at tempus wel, ief

The complete _Layout.cshtml file is shown below:

<IDOCTYPE html>

<htmllang="en">

<head>

<metacharset="utf-8"/>

<title>@ViewBag.Title - Movie App</title>

<linkhref="~/favicon.ico"rel="shortcut icon"type="image/x-icon"/>
<linkhref="@System.Web.Optimization.BundleTable.Bundles.ResolveBundleUrl("~/Content/c
ss")"rel="stylesheet"type="text/css"/>
<linkhref="@System.Web.Optimization.BundleTable.Bundles.ResolveBundleUrl("~/Content/t
hemes/base/css")"rel="stylesheet"type="text/css"/>
<scriptsrc="@System.Web.Optimization.BundleTable.Bundles.ResolveBundleUrl("~/Scripts/
js")"></script>

<metaname="viewport"content="width=device-width"/>

</head>

<body>

<header>

<divclass="content-wrapper">

<divclass="float-left">
<pclass="site-title">@Html.ActionLink("MVC Movie", "Index", "Home")</p>
</div>

<divclass="float-right">

<sectionid="1login">

@Html.Partial("_LoginPartial™")

</section>

<nav>

<ulid="menu">

@Html.ActionLink("Home", "Index", "Home")
@Html.ActionLink("About", "About", "Home")
@Html.ActionLink("Contact", "Contact", "Home")</1li>

</nav>

</div>

</div>

</header>

<divid="body">

@RenderSection("featured", required: false)
<sectionclass="content-wrapper main-content clear-fix">
@RenderBody ()

</section>

</div>

<footer>

<divclass="content-wrapper">

<divclass="float-left">

<p>© @DateTime.Now.Year - My ASP.NET MVC Application</p>
</div>

<divclass="float-right">

<ulid="social">
<ahref="http://facebook.com"class="facebook">Facebook</1i>
<ahref="http://twitter.com"class="twitter">Twitter</1i>

</div>

</div>

http://facebook.com
http://twitter.com

</footer>
</body>
</html>

Now, let's change the title of the Index view.

Open MvcMovie\Views\HelloWorld\Index.cshtml. There are two places to make a change: first, the text that
appears in the title of the browser, and then in the secondary header (the <h2> element). You'll make them

slightly different so you can see which bit of code changes which part of the app.

@{

ViewBag.Title = "Movie List";

<h2>My Movie List</h2>

<p>Hello from our View Template!</p>

To indicate the HTML title to display, the code above sets a Title property of the ViewBag object (which is in
the Index.cshtml view template). If you look back at the source code of the layout template, you'll notice that
the template uses this value in the <title> element as part of the <head> section of the HTML that we
modified previously. Using this ViewBag approach, you can easily pass other parameters between your view

template and your layout file.

Run the application and browse to http://localhost:xx/HelloWorld. Notice that the browser title, the primary
heading, and the secondary headings have changed. (If you don't see changes in the browser, you might be
viewing cached content. Press Ctrl+F5 in your browser to force the response from the server to be loaded.) The
browser title is created with the ViewBag.Title we set in the Index.cshtml view template and the additional "-

Movie App" added in the layout file.

Also notice how the content in the Index.cshtml view template was merged with the _Layout.cshtml view
template and a single HTML response was sent to the browser. Layout templates make it really easy to make

changes that apply across all of the pages in your application.

http://localhost:xx/HelloWorld

| Movie List - Mowie App

L C | @ localhost1234/HelloWorld W
]

Register Laogin

Home About Contact

My Movie List

Hello fram our Wiew Template!

= 2012 - hy ASPMET MWEC Lpplication ;

Our little bit of "data" (in this case the "Hello from our View Template!" message) is hard-coded, though. The
MVC application has a "V" (view) and you've got a "C" (controller), but no "M" (model) yet. Shortly, we'll walk

through how create a database and retrieve model data from it.

Passing Data from the Controller to the View

Before we go to a database and talk about models, though, let's first talk about passing information from the
controller to a view. Controller classes are invoked in response to an incoming URL request. A controller class is
where you write the code that handles the incoming browser requests, retrieves data from a database, and
ultimately decides what type of response to send back to the browser. View templates can then be used from a

controller to generate and format an HTML response to the browser.

Controllers are responsible for providing whatever data or objects are required in order for a view template to
render a response to the browser. A best practice: A view template should never perform business logic or
interact with a database directly. Instead, a view template should work only with the data that's provided to it
by the controller. Maintaining this "separation of concerns" helps keep your code clean, testable and more

maintainable.

Currently, the Welcome action method in the HelloWorldController class takes a name and a numTimes
parameter and then outputs the values directly to the browser. Rather than have the controller render this
response as a string, let's change the controller to use a view template instead. The view template will generate
a dynamic response, which means that you need to pass appropriate bits of data from the controller to the view
in order to generate the response. You can do this by having the controller put the dynamic data (parameters)

that the view template needs in a ViewBag object that the view template can then access.

Return to the HelloWorldController.cs file and change the Welcome method to add a Message and NumTimes
value to the ViewBag object. ViewBag is a dynamic object, which means you can put whatever you want in to
it; the ViewBag object has no defined properties until you put something inside it. TheASP.NET MVC model
binding system automatically maps the named parameters (nameand numTimes) from the query string in the

address bar to parameters in your method. The completeHelloWorldController.cs file looks like this:

usingSystem.Web;

usingSystem.Web.Mvc;

namespaceMvcMovie.Controllers

{
publicclassHelloWorldController:Controller

{
publicActionResultIndex()

{

returnView();

}

publicActionResultWelcome(string name,int numTimes =1)

{

ViewBag.Message="Hello "+ name;

ViewBag.NumTimes= numTimes;

returnView();

}
}
}

Now the ViewBag object contains data that will be passed to the view automatically.

http://rachelappel.com/when-to-use-viewbag-viewdata-or-tempdata-in-asp.net-mvc-3-applications
http://odetocode.com/Blogs/scott/archive/2009/04/27/6-tips-for-asp-net-mvc-model-binding.aspx
http://odetocode.com/Blogs/scott/archive/2009/04/27/6-tips-for-asp-net-mvc-model-binding.aspx
http://odetocode.com/Blogs/scott/archive/2009/04/27/6-tips-for-asp-net-mvc-model-binding.aspx

Next, you need a Welcome view template! In the Build menu, select Build MvcMovie to make sure the project
is compiled.

"

90 MvcMovie - Microsoft Visual Studio 11 Express Beta for Web
File Edit “iew Project Debug Tearm Tools UnitTest Méindow Help {

- R | B~ W P StartDebugging Fa Debug = | A_ig
2% Build Muchovie

HelloWorldController,cs™ 4 -
#2 bAvchiovie.Controllers.H G StepInto FI1 e, int numTirmes =19 =
Flusing System.Web G Step Cheer F1n0 =
LMl Systen.ben Toggle Breakpoint Fg =l [
Elnamespace MvcMowv Wifird owes b
{ i A8l TiataTin
=l public class kb
= /7 Impart DataTips ...
Options and Settings...
= ?uhlic A B Muchovie Praperties...
return View();
h
= /1 I
// GET: /HelloWorld/Welcome/
El public ActionResult Welcome(string name, int numTimes = 1)
1
ViewBag.Message = "Hello ™ + name;
ViewBag.NumTimes = numTimes;
return View();
; ¥
5 ;
L}
100%: = 4| m 3

ERRORLIST OQUTPUT FIMD RESULTS1
Ready Lk 25 Col 10

Then right-click inside the Welcome method and click Add View.

-

20 MyvcMovie - Microsoft Visual Studio 11 Express Beta for Web ||| B[]

File Edit “iew Project Debug Team Tools UnitTest “Window Help Cuick Launch {Ctrl +) el
1 - Bra g2 - | B Internet Explorer = Debug - | M _imfE il
HelloWorldControllercs* + X Layout.cshiml Index, cshtml ~ ¢ SOLUTION EXPLORER. = I X
‘QMchuvie.Cnntrnllers.HEII:::"-.I'I.-"DrIdCDr = @ WWelcome(string name, int numTimes - f:j al c'-"'l ~ | £
1 F Search Solution Explorer (Ctr P~
= public class HelloWorldController : Controller

&8 MvcMovie

1
& Iy b &M Properties
// GET: /HelloWorld/ — P =W References
M fpp_Data
- public ActionResult Index() [Ml Content
1 . 4 f Controllers
return View(): e AccountControllercs
; < % HelloWarldController.c
o /7 Ee* HomeContraller.cs
// GET: /HelloWorld/Welcome/ b Ml Images
Ml Madels
= public ActiconResult Welcome(string name, int numTimni b Ml Scripts
| a4 o Wiews
B T =]
B Addview Crl + M, Crl+4 5
Go Ta View Crl +hd, Ctrl+G 4 & HellowWorld
Refactar b +[@] Index.cihtml
Organize Usings » PN Eior
1 b ; 4 gl Shared
) & Bun Unit Tests Ctrl+R, T S | avbutshim|
™ Comment Selection Crrl + K, Crrl+C @@ _LoginPartial.cshtm
£ Uncomment Selectian Cirl +K, Cirl+L GI@] Error.cshirml
11 Insert Snippet.. Chrl+K, Chrl+3 i ‘UIEWStaﬁ_:'EShtml
. ; YR Yieh,config
i1 Surround With,., Crel+I, Crl+5 | 8 &l faviconico
| GoTo Definition F1z2 P Sgd Globalasax
Find All References Shift+F12 &Y® packages.config
b ay® Web.config
Breakpoint]
Gs Fun To Cursor Ctrl +F10
M Cut Crl +
gl Copy Ctrl +C
|:f| Paste Chrl 3
Dutlining k v
100% = < ‘| nm | b
3 Zource Control k 4 3 .

ERRORLIET DUIFUl HIMND HESUL IS 1
Ready Ln 20 Col 10 Ch 10 IS

Here's what the Add View dialog box looks like:

[Add View B3]

Wiew names:

Welcome
View engine:

|Razor (CSHTML) -

["] Create a strongly-typed view

Model class:

|
| -

Scaffold template:
IErru::u‘L'g,.r \ | [/] Reference script libraries

["] Create as a partial view

Use a layout or master page:

(Leave emnpty if it is set in a Razor _viewstart file)

ContentPlaceHolder ID;

iMainCDntent |

Click Add, and then add the following code under the < h2> element in the new Welcome.cshtml file. You'll

create a loop that says "Hello" as many times as the user says it should. The completeWelcome.cshtml file is

shown below.

@{

ViewBag.Title = "Welcome";
}
<h2>Welcome</h2>

@for (int i=0; i < ViewBag.NumTimes; i++) {
@ViewBag.Message</1li>

}

Run the application and browse to the following URL:

http://localhost:xx/HelloWorld/Welcome?name=Scott&numtimes =4

Now data is taken from the URL and passed to the controller using themodel binder. The controller packages
the data into a ViewBag object and passes that object to the view. The view then displays the data as HTML to

the user.

Welcarme - Movie &pp

&= C @ localhost1234/HelloWaorld/Welcome?name =Scott&numTimes=4 S5 | &
|

Register Login

Home About Contact

Welcome

m

Hello Scott
Hello Scott
Hello Scott

-
-
-
® Hello Scott

@ 2012 - My ASPMET MW Application m @

Well, that was a kind of an "M" for model, but not the database kind. Let's take what we've learned and create a

database of movies.

http://localhost:xx/HelloWorld/Welcome?name=Scott&numtimes=4
http://odetocode.com/Blogs/scott/archive/2009/04/27/6-tips-for-asp-net-mvc-model-binding.aspx

Adding a Model

In this section you'll add some classes for managing movies in a database. These classes will be the "model"
part of the ASP.NET MVC application.

You'll use a .NET Framework data-access technology known as the Entity Framework to define and work with

these model classes. The Entity Framework (often referred to as EF) supports a development paradigm called

Code First. Code First allows you to create model objects by writing simple classes. (These are also known as

POCO classes, from "plain-old CLR objects.") You can then have the database created on the fly from your

classes, which enables a very clean and rapid development workflow.

Adding Model Classes

In Solution Explorer, right click the Models folder, select Add, and then select New Item.

B FunRec ipe..

T Mewlem... Ctrl +Shift+4

O Edsting tem... Shift+Alk+d
Add AZP.MET Folder

‘W Mew Folder

O « 3¢ 2 B

»"VIITX LBXx

View in Browser (Internet Explorer)
Browrse YWith..,

Comvert to Web Spplication

Add

Scope to This

Mew View

Get Latest Version (Recursive)
Get Specific Version...

Check Out for Edit...,

Wiew History

Exclude From Project

Cut

Copy

Delete

Rename

Open Folder in Windows Explorer

Properties

&E1 MvcMovie
b @& Properties
P =@ References

ol App Data
b Wl Content
b ml Contrallers
_I b ol Images
Ctrl#3hift+W AccountModels.cs
pts
s
COM.ICo
¥ balasax
kages.config
b.config

Ctrl+X
Ctrl+C

Del

Alt+Enter

In the Add New Item dialog, select Class then name the class "Movie".

4 Visual 8
Data
General

4 b
AW 4
Sikverlight

¥ Dnline

Mame:

Sort by: | Default -] #[E
Class Visual C#
Interface Wisual C#

ADOMNET EntityObject Genera.. Visual C#
ADOMNET EntrtyQObject Genera..Visual C#
ADOMNET Self-Tracking Entity... Visual C#
ADOMET Self-Tracking Entity.., Visual C#

Code File Visual C#

Search Installed Ternpiates

Type: Visual C#

An empty clas: declaration

I Add I Cancel

50 MycMovie - Microsoft Visual Studio 11 Express Beta for Web [|| B |23
File Edit Wiew Project Debug Tearn Tools Cluick Launch (Chl+00) ol
Unit Test Window Help
- | D~ e | | b Internet Explorer - I | il
Mowiecs B X - o SOLUTIOMN EXPLORER = O X
*2 tAuchdovie Models. Mo = - fal BT q‘.‘| F | Lk
Elusing System; + Seatch Solution Explarer (Ctr 2
using System.Collections.Generic; F %
using System.Lling; — “&] MvcMovie
using System.lWeb; b &M Properties
[=W References
Elnamespace MvcMovie.Models M Spp_Data
1 Ml Content
= public class Movie b mll Controllers
1 | b M Image:
[¥ | 4 @l Models
¥ Sc* Accountfodels.cs
+E Mowvie.cs
oMl Scripts
PooEl Views
&[] favicon.ico
| b @83 Global.asax
ay® packages.canfig
b ay® Web.config
100% = 4 | m b
ERROR LIST FIMD RESULTS 1
Feady Lnl Cal 1l Chil NS

Add the following five properties to the Movie class:

publicclassMovie

{

publicint ID {get;set;}
publicstringTitle{get;set;}
publicDateTimeReleaseDate{get;set;}
publicstringGenre{get;set;}

publicdecimalPrice{get;set;}

We'll use the Movie class to represent movies in a database. Each instance of a Movie object will correspond to

a row within a database table, and each property of the Movie class will map to a column in the table.

In the same file, add the following MovieDBContext class:

publicclassMovieDBContext:DbContext

{
publicDbSet<Movie>Movies{get;set;}

}

The MovieDBContext class represents the Entity Framework movie database context, which handles fetching,
storing, and updating Movie class instances in a database. The MovieDBContext derives from theDbContext
base class provided by the Entity Framework. For more information about DbContext and DbSet,

seeProductivity Improvements for the Entity Framework.

In order to be able to reference DbContext and DbSet, you need to add the following using statement at the

top of the file:

usingSystem.Data.Entity;

The complete Movie.cs file is shown below. (Several using statements that are not needed have been removed.)

usingSystem;

usingSystem.Data.Entity;

namespaceMvcMovie.Models

{

publicclassMovie

{

publicint ID {get;set;}
publicstringTitle{get;set;}
publicDateTimeReleaseDate{get;set;}
publicstringGenre{get;set;}

publicdecimalPrice{get;set;}

http://blogs.msdn.com/b/efdesign/archive/2010/06/21/productivity-improvements-for-the-entity-framework.aspx?wa=wsignin1.0

publicclassMovieDBContext:DbContext

{
publicDbSet<Movie>Movies{get;set;}
}
}

Creating a Connection String and Working with SQL Server LocalDB

The MovieDBContext class you created handles the task of connecting to the database and mapping Movie
objects to database records. One question you might ask, though, is how to specify which database it will

connect to. You'll do that by adding connection information in the Web.config file of the application.

Open the application root Web.config file. (Not the Web.configfile in the Views folder.) Open the Web.config file

outlined in red.

Search solution Explarer (Ctr P~
+E] MvcMovie

P &M Properties

[=W References

M App_Data
b Ml Content
Wl Contrallers
b Ml Images
4 gl Models

e Accounthiodels,cs
B PMoviecs
b Ml Scripts
ool Views
&[] favicon.ico
b &g Global.asax
B packages.config

[sipH
[r- YWifeh,co ﬂfig

Add the following connection string to the <connectionStrings> element in the Web.config file.

<addname="MovieDBContext"

connectionString="Data
Source=(LocalDB)\v11.0;AttachDbFilename=|DataDirectory|\Movies.mdf;Integrated
Security=True"

providerName="System.Data.SqlClient"

/>

The following example shows a portion of the Web.config file with the new connection string added:

<connectionStrings>

<addname="DefaultConnection"

connectionString="Data Source=(LocalDb)\v11.0;Initial Catalog=aspnet-MvcMovie-
2012213181139;Integrated Security=true"

providerName="System.Data.SqlClient"

/>

<addname="MovieDBContext"

connectionString="Data
Source=(LocalDB)\v11.0;AttachDbFilename=|DataDirectory|\Movies.mdf;Integrated
Security=True"

providerName="System.Data.SqlClient"

/>

</connectionStrings>

This small amount of code and XML is everything you need to write in order to represent and store the movie
data in a database.

Next, you'll build a new MoviesController class that you can use to display the movie data and allow users

to create new movie listings.

Accessing Your Model's Data from a Controller

In this section, you'll create a new MoviesController class and write code that retrieves the movie data and

displays it in the browser using a view template.
Build the application before going on to the next step.

Right-click the Controllers folder and create a new MoviesController controller. The options below will not

appear until you build your application. Select the following options:

e Controller name: MoviesController. (This is the default.)

e Template: Controller with read/write actions and views, using Entity Framework.
e Model class: Movie (MvcMovie.Models).

e Data context class: MovieDBContext (MvcMovie.Models).

e Views: Razor (CSHTML). (The default.)

Controller name;
MaoviesController
Scaffolding options
Template:

Controller with read/write actions and views, using Entity Frarnework

Model class:
Maowvie (MvchMovie Models)
Data context class:

MovieDBContext (MvchMovie Models)

Wiews:

| Razor (CSHTML) v| | Advanced Options..

/|

Click Add. Visual Studio Express creates the following files and folders:

e A MoviesController.csfile in the project's Controllers folder.

e A Movies folder in the project's Views folder.

e Create.cshtml, Delete.cshtml, Details.cshtml, Edit.cshtml, and Index.cshtml in the new Views\Movies folder.

=0 MychMovie - Microsoft Visual Studio 11 Express Beta for Web
File Edit “iew Project Urit Test
Window Help

- i Rl
MoviesContraller.cs R X !Cre_a_j:g.g:shtrr‘:l
"[3M\.-'EMDViE.CDntrD”EfS.MDViE: - ﬂa dhb
System;
System.Collections.Generic;
System.Data;
System.Data.Entity;
System.Ling;

System.Web;

System.Web.Mvc;
MvcMovie.Models;

Debug Tearn Toals

—lusing
|using
|using
|using
|using
|using
|using
| using

-Inamespace MvcMovie.Controllers

1

=] public class

1

MoviesController : Controller

private MovieDBContext db = new MowieDB

= Iy
/f GET: /Movies/

- public ActionResult Index()

1
b

= ¥
/f GET: /Movies/Details/5

return View(db.Movies.TolList());

- public ActionResult Details(int id = @)

1
Movie movie = db.Movies.Find({id};
if (movie == null)

1
¥

return View(movie);

return HttpNotFound();

b

= I
/f GET: /Movies/Create

100 %

—_—

ERROR LIST FIND RESULTS 1

Thiz itern does not support previews., Lnl Coll

| P Internet Explorer =

-

R N

=)

Cuick Launch {Ctrl+0) pe

Debug ~ | M JE [0 - 2

= SOLUTION EXPLORER « B X

aaeld s "
Search Solution Explorer (Ctr P~

ﬁ_| MvchMovie
b &8 Properties
- =B References
M fpp_Data
M Content
4 @l Controllers
@t AccountControllercs
@ HelloWarldController.c
&C* HomeController.cs
O MoviesController.cs
M Images
M Maodels
M Gcripts
&l biews
M fccount
M HelloWoarld
M Home
aml Movies
a0@] Create.cshtml
@] Delete.cshtrml
@@ Details.cshtinl
@] Edit.cshtml
a0@] Index cshtmil
Wl Shared
&1 iewstart cshtml
248 Web.config
&[] faviconico
b @& Globalasax
a¥® packages.config
b 2y® wWeb.config

AT T v

k VvV Vv v

Chil IS

ASP.NET MVC 4 automatically created the CRUD (create, read, update, and delete) action methods and views
for you (the automatic creation of CRUD action methods and views is known as scaffolding). You now have a

fully functional web application that lets you create, list, edit, and delete movie entries.

Run the application and browse to the Movies controller by appending /Movies to the URL in the address bar
of your browser. Because the application is relying on the default routing (defined in the Global asax file), the
browser request http.//localhost:xxxxx/Movies is routed to the default Index action method of the Movies
controller. In other words, the browser request http://localhost:xxxxx/Movies is effectively the same as the
browser request http://localhost:xxxxx/Movies/Index. The result is an empty list of movies, because you haven't
added any yet.

Index - Movie Spp
<« C | @ localhost1234/Movies x Al ¢

L3

Register Login

Home About Contact

Index

m

Create Mew

Title ReleaseDate Genre Price

& 2012 - My ASPMET MYE Spplicatian m E

Creating a Movie

Select the Create New link. Enter some details about a movie and then click the Create button.

http://localhost:xxxxx/Movies
http://localhost:xxxxx/Movies
http://localhost:xxxxx/Movies/Index

Create - Mowvie &pp

< C | @ localhost1234/Movies/Create i
... |

»

Register Login

Home About Contact

Create
Title

Yihen Harry Met Sally

ReleaseDate

1111989

m

Genre
Comedy

Price

9.99

Create

Back to List

22012 - hy ASPMET bWEC Application IH n -

Clicking the Create button causes the form to be posted to the server, where the movie information is saved in
the database. You're then redirected to the /Movies URL, where you can see the newly created movie in the

listing.

| Index - Mowie App

€ C © localhost1234/Movies w N
e ______________________________________[N

Register Login

Home About Contact

Index L
Create Mew
Title ReleaseDate Genre Price
When Harry Met 171171989 12:00:00 Comedy 9.99 Edit | Details |
Sally Al Delete
@ 2012 - My ASP.NET MWE Application W E
o |-"'-|I

Create a couple more movie entries. Try the Edit, Details, and Delete links, which are all functional.

Examining the Generated Code

Open the Controllers\MoviesController.cs file and examine the generated Index method. A portion of the movie

controller with theIndex method is shown below.

publicclassMoviesController:Controller

{

privateMovieDBContext db =newMovieDBContext();

//
// GET: /Movies/

publicActionResultIndex()
{

returnView(db.Movies.TolList());

The following line from the MoviesController class instantiates a movie database context, as described

previously. You can use the movie database context to query, edit, and delete movies.

privateMovieDBContext db =newMovieDBContext();

A request to the Movies controller returns all the entries in the Movies table of the movie database and then

passes the results to the Index view.

Strongly Typed Models and the @model Keyword

Earlier in this tutorial, you saw how a controller can pass data or objects to a view template using the ViewBag
object. The ViewBag is a dynamic object that provides a convenient late-bound way to pass information to a

view.

ASP.NET MVC also provides the ability to pass strongly typed data or objects to a view template. This strongly
typed approach enables better compile-time checking of your code and richer IntelliSense in the Visual Studio
Express editor. The scaffolding mechanism in Visual Studio Express used this approach with the

MoviesController class and view templates when it created the methods and views.

In the Controllers\MoviesController.cs file examine the generated Details method. A portion of the movie

controller with theDetails method is shown below.

publicActionResultDetails(int id =0)
{

Movie movie =db.Movies.Find(id);
if(movie ==null)

{

returnHttpNotFound();

}

returnView(movie);

}

An instance of the Movie model is passed to the Details view.

By including a @model statement at the top of the view template file, you can specify the type of object that the
view expects. When you created the movie controller, Visual Studio Express automatically included the

following@model statement at the top of the Details.cshtml file:

@model MvcMovie.Models.Movie

This @model directive allows you to access the movie that the controller passed to the view by using a Model
object that's strongly typed. For example, in the Details.cshtml template, the code passes each movie field to
the DisplayNameFor and DisplayFor HTML Helpers with the strongly typed Model object. The Create and Edit

methods and view templates also pass a movie model object.

Examine the Index.cshtml view template and the Index method in the MoviesController.cs file. Notice how the
code creates aList object when it calls the View helper method in the Index action method. The code then

passes this Movies list from the controller to the view:

publicActionResultIndex()
{
returnView(db.Movies.TolList());

}

When you created the movie controller, Visual Studio Express automatically included the following@model

statement at the top of the Index.cshtml file:

@model IEnumerable<MvcMovie.Models.Movie>

This @model directive allows you to access the list of movies that the controller passed to the view by using a
Model object that's strongly typed. For example, in the Index.cshtml template, the code loops through the

movies by doing a foreach statement over the strongly typed Model object:

@foreach (var item in Model) {

<tr>

<td>

@Html.DisplayFor(modelItem => item.Title)

</td>

<td>

@Html.DisplayFor(modelItem => item.ReleaseDate)

http://msdn.microsoft.com/en-us/library/system.web.mvc.html.displayextensions.displayfor(VS.98).aspx
http://msdn.microsoft.com/en-us/library/6sh2ey19.aspx

</td>

<td>

@Html.DisplayFor(modelItem => item.Genre)

</td>

<td>

@Html.DisplayFor(modelItem => item.Price)

</td>

<th>

@Html.DisplayFor(modelItem => item.Rating)

</th>

<td>

@Html.ActionLink("Edit", "Edit", new { id=item.ID }) |
@Html.ActionLink("Details", "Details", { id=item.ID }) |
@Html.ActionLink("Delete", "Delete", { id=item.ID })
</td>

</tr>

Because the Model object is strongly typed (as an IEnumerable<Movie> object), each item object in the loop
is typed as Movie. Among other benefits, this means that you get compile-time checking of the code and full

IntelliSense support in the code editor:

=9 Muchdovie - Microsoft Wisual Studio 11 Express Beta for Web

=
P

File Edit “iew Project Debug Tearn Tools Urit Test MWindow Cick Launch (Ctrl+0)
Help
- EC B9 - | B Interniet Explorer = Debug - | A i 2
Indexcshtml™ A 0 Wifeb.canfig @ -
{@Html.DisplayNameFor (model => model.Price) —
</th> .
<thx</th>
<ftr>
@foreach (var item in Model} {
=1 <tr>
=] <td>
{iHtml.DisplayFor({modelItem =» item.Title)
L </td>
=] <td>
{iHtml.DisplayFor(modelItem =» item.ReleaseDate) I
L </td>
=] <td>
{iHtml.DisplayFor(modelItem => item.Genre)
L </td>
=1 <td>
iHtml.DisplayFor(modelItem =3 i‘tem,ﬂ}
L </td> @ Equals =
=] <td> £ G
@Html.ActionLink("Edit”, "Edit", ne® 5 | =
@Html.ActionLink("Details”, "Detail @ GetHashCode 1p 1y |
@Html.Actionlink({"Delete”, "Delete” @ GetType S
</td> & 1D
I s * |decima| Mowie.Price
K H# ReleaszeDate
</table> & Title
' @ ToString i
100% = < | m b
[Source | EHc:tahIe?—-”c:tr?—-l <td - IEI
ERRORLIST OQUTPUT FIMD RESULTE 1
Ready Lr 41 Cal 49 Ch 49 M3

4l

HIHOTdx3 NOLLNTOE

Working with SQL Server LocalDB

Entity Framework Code First detected that the database connection string that was provided pointed to a
Movies database that didn't exist yet, so Code First created the database automatically. You can verify that it's
been created by looking in the App_Data folder. If you don't see the Movies.sdf file, click the Show All Files
button in theSolution Explorer toolbar, click the Refresh button, and then expand the App_Data folder.

s BOLUTION EXPLORER

@ a e o @lml@l
Search Solution Expl Ctrl +:
earch Solution Explorer (Ctrl+2) T i P P
+B@] MvcMovie

b & Properties
[+ =B References

-

M Zpp_Data
i mll Content
] Cantrollers

M Images

M hodels

M Gcripts

M iews
&[] favicon.ico

2 SOLUTION EXPLORER o w43 6

Qe eR #|[Fe e =

Search solution Explarer (Tl +2) il
+E] MvcMovie

b & & Properties

[+ =W References

4 gl App Data
a Mowies, mdf
£.: bin

M Content

M Controllers

M Images

M tadels

il obj

M Gcripts

Ml Views
&[] favicon.ico
b &gl Glohal.asax

B

T ddovies.mdf

L5 Muchdoviecsprojaespsce

92 packages.config
b @yB Web.config

Double-click Movies.mdf to open DATABASE EXPLORER. Then expand the Tables folder to see the tables that

have been created in the database.

a2 DATABASE EXPLORER iomminmicnn: - III' b4
W | e

= @l Data Connections
[E DefaultConnection (hwchdovie)
b g MowieDBECortext (Mwchdowvie)
a E kdowies. mdf

4 Ml Tables

- Bl EdmMetadata

B EH Mowies

M Views

M Gtored Procedures

M Functions

M Synonyms

M Type:s

M Sssemblies

e

There are two tables, one for the Movie entity set and theEdmMetadata table. The EdmMetadata table is used

by the Entity Framework to determine when the model and the database are out of sync.

Right-click the Movies table and select Show Table Data to see the data you created.

20 Pwchdovie - Microsoft Visual Studio 11 Express Beta for Web
File Edit Miew Project Debug Team Tools UmitTest Window Help
el S w | | P Internet Explorer = Debug - | A & E
dbo.Movies [Data] + X -
0 | % | MaxRows: 1000 - | IO 2]
1D Title ReleaseDate Genre Price
] Ghostbusters 11171984 1000, Comedy 1.99
2 Fio Bravo 2161959 12:00... Western 4,99
* MULL MLILL MULL MLLL MLILL

Right-click the Movies table and select Open Table Definition to see the table structure that Entity Framework

Code First created for you.

2 DATABASE EXPLORER oo w= [Il b
0 x|

= @M Data Connections
[a DefaultConnection (hAwchdowie)
[a kdowieDBC ontext (hduchdovied
4 ¢ Moviesmdf

4 M Tables
b BH Edmbdetadata
P === M ovie s
Add Mew Table
Add Mew Trigger scedures
Mew CQuery i
Open Table Definition
¢ Show Table Data ag
gl Copy Chrl+C
> Delete el

€2 Refresh
& Properties Alt+Enter

=8 Muchovie - Microsoft Visual Studia 11 Express Beta for Web
File Edit Miew Project Debug Tearmn Tools Unit Test Méindow Help
B | R - | | P Internet Explorer = Debug ~ | A _:
dboMovies [Design] B X -
4+ |pdate | Script File: dbo.Movies.sgl -
Mame Data Type Allowe ML 4 Keys (1)
wo IO i &l zunnarmed > (Primary Key, Cluste
: Check Constraints ([
Title nvarcharihaasg [¥] Eck Constalnts (1]
Indexes {0}
Releasebate datetirme [l Foreign Keys (0)
Genre rivarchar (830 [+ Triggers ()
Price decimal(18 2} [T
(]
4 m | C
| |@Design b mTsqL | - mji=lca
CREATE TABLE [dbo].[Movies] | L
[1D] INT IDENTITY (1, 1) NOT NULL, ?
[Title] NVARCHAR (MAX) NULL, |:
[ReleaseDate] DATETIME NOT NULL, 1%
[Genre] NVARCHAR (MAX) NULL, E
[Price] DECIMAL (18, 2) NOT NULL,
PRIMARY KEY CLUSTERED ([ID] ASC)
100% + 4| m | b
_ﬁ# Connection Ready | (LacalDBYw11.0 | REDMOMNDYHande | MACWIES A6ce438d79354a4..,
ERROR LIST QUTPUT FIMD RESULTS 1
Ready

Notice how the schema of the Movies table maps to the Movie class you created earlier. Entity Framework

Code First automatically created this schema for you based on your Movie class.

When you're finished, close the connection by right clicking Movies.mdf and selecting Close Connection. (If you

don't close the connection, you might get an error the next time you run the project).

20 kAechdovie - MicrosoftVWisual Studio 11 Express Beta for Wehb — | [E] | |t

File Edit ‘iew Project Debug Team Data Tools Unit Test Cuick Launch (Chrl +0) 2

Window Help

o - | it - i | b Internet Explorer = Debug = | H ; ‘ ;
i DATABASE EXPLORER sunmmunnunnunn o w J.'Il x»

W |

= @¥ Data Connections
[E DefaultConnection (Mduwchdowvie)
g MovieDEContext (Muchdowie)
] kdowies. mdf

2 FRefresh

wletadata
> Delete Drel

£3
Change “iew]

Madify Cannection... ‘ocedures
5

HIHOTdx3 Wwdl WIdO1dxI NOLLATOE

Close Caonnection
15

Mew Query
Detach Database s

Rename

531LH3dodd

& Properties Llt+Enter

ERRORLIST OQUTPUT FIND RESULTS 1
Feady

You now have the database and a simple listing page to display content from it. In the next tutorial, we'll
examine the rest of the scaffolded code and add a SearchIndex method and a SearchIndex view that lets

you search for movies in this database.

Examining the Edit Methods and Edit View

In this section, you'll examine the generated action methods and views for the movie controller. Then you'll add

a custom search page.

Run the application and browse to the Movies controller by appending /Movies to the URL in the address bar

of your browser. Hold the mouse pointer over an Edit link to see the URL that it links to.

| Index - Movie App

\ C @ localhost1234/Movies 9 A
|

Register Login

Home About Contact

Index

Create Mew

Title ReleaseDate Genre Price
Wihen Harry Met Sally 1/11/1989 12:00:00 AWM Romantic Comedy 999 Edit
shosthusters 1/11/1984 12:00:00 AN Comedy Teao el
Ghosthusters 11 9171986 12:00:00 AN Comedy 7.99 Edit
Rio Eravo 451959 12:00:00 AN Western 3,99

| Details | Delete
| Details | Delete
| Details | Delete
| Details | Delete

2 2012 - My ASPMET MYWC Application

localhost 1234/ M owviesEditfd

The Edit link was generated by the Html.ActionLink method in the Views\Movies\Index.cshtml view:

@Html.ActionLink("Edit", "Edit", new { id=item.ID })

<t
BHtwl.Actionlink("Edit Me”, "Edit”, new { id=item.ID 1} |

BHrml. (extension) MycHEmIString HirmlHelper, ActionLink (string link Text, string actionhame, object routelalues)
BHeml.| petyrns an anchor element (a elernent) that contains the virtual path of the specified action.

Exceptions:
Systen. ArgurmentException

The Html object is a helper that's exposed using a property on the System.Web.Mvc.WebViewPage base class.
The ActionLinkmethod of the helper makes it easy to dynamically generate HTML hyperlinks that link to
action methods on controllers. The first argument to the ActionLink method is the link text to render (for
example,<a>Edit Me). The second argument is the name of the action method to invoke. The final

argument is ananonymous object that generates the route data (in this case, the ID of 4).

The generated link shown in the previous image is http://localhost:xxxxx/Movies/Edit/4. The default route
(established in Global.asax.cs) takes the URL pattern {controller}/{action}/{id}. Therefore, ASP.NET
translateshttp.//localhost:xxxxx/Movies/Edit/4 into a request to the Edit action method of the Movies

controller with the parameter ID equal to 4.

You can also pass action method parameters using a query string. For example, the URL
http://localhost:xxxxx/Movies/Edit?ID=4 also passes the parameter ID of 4 to the Edit action method of

theMovies controller.

http://localhost:xxxxx/Movies/Edit/4
http://localhost:xxxxx/Movies/Edit/4
http://localhost:xxxxx/Movies/Edit?ID=4
http://msdn.microsoft.com/en-us/library/gg402107(VS.98).aspx
http://msdn.microsoft.com/en-us/library/system.web.mvc.html.linkextensions.actionlink.aspx
http://weblogs.asp.net/scottgu/archive/2007/05/15/new-orcas-language-feature-anonymous-types.aspx

| Edit - Mowie App

&« C @ localhostpd148/Movies/Edit?id=4

Edit
Title
Fio Brawvo

ReleaseDate
451959 12:00:00 Ahd
Genre

Western

Price

2949

Save

Home

About

W N
istet Login
Cantact

m

Open the Movies controller. The two Edit action methods are shown below.

/7
/7

publicActionResultEdit(int id =0)

{

Movie movie =db.Movies.Find(id);

GET: /Movies/Edit/5

if(movie ==null)

{

returnHttpNotFound();

}

returnView(movie);

}

//
// POST: /Movies/Edit/5

[HttpPost]
publicActionResultEdit(Movie movie)

{
if(ModelState.IsValid)

{
db.Entry(movie).State=EntityState.Modified;
db.SaveChanges();
returnRedirectToAction("Index");

}

returnView(movie);

}

Notice the second Edit action method is preceded by the HttpPost attribute. This attribute specifies that that

overload of the Edit method can be invoked only for POST requests. You could apply the HttpGet attribute to

the first edit method, but that's not necessary because it's the default. (We'll refer to action methods that are

implicitly assigned the HttpGet attribute as HttpGet methods.)

The HttpGetEdit method takes the movie ID parameter, looks up the movie using the Entity Framework Find

method, and returns the selected movie to the Edit view. The ID parameter specifies a default value of zero if

the Edit method is called without a parameter. If a movie cannot be found, HttpNotFound is returned. When

the scaffolding system created the Edit view, it examined the Movie class and created code to render <label>

and <input> elements for each property of the class. The following example shows the Edit view that was

generated:

@model MvcMovie.Models.Movie

@{
ViewBag.Title = "Edit";

<h2>Edit</h2>

http://msdn.microsoft.com/en-us/library/system.web.mvc.httppostattribute.aspx
http://msdn.microsoft.com/en-us/library/system.web.mvc.httpgetattribute.aspx
http://msdn.microsoft.com/en-us/library/dd264739.aspx
http://msdn.microsoft.com/en-us/library/gg453938(VS.98).aspx

<scriptsrc="@Url.Content("~/Scripts/jquery.validate.min.js")"type="text/javascript"><
/script>
<scriptsrc="@Url.Content("~/Scripts/jquery.validate.unobtrusive.min.js")"type="text/j

avascript"></script>

@using (Html.BeginForm()) {
@Html.ValidationSummary(true)
<fieldset>

<legend>Movie</legend>

@Html.HiddenFor(model => model.ID)

<divclass="editor-label">

@Html.LabelFor(model => model.Title)

</div>

<divclass="editor-field">

@Html.EditorFor(model => model.Title)
@Html.ValidationMessageFor(model => model.Title)

</div>

<divclass="editor-label">

@Html.LabelFor(model => model.ReleaseDate)

</div>

<divclass="editor-field">

@Html.EditorFor(model => model.ReleaseDate)
@Html.ValidationMessageFor(model => model.ReleaseDate)

</div>

<divclass="editor-label">

@Html.LabelFor(model => model.Genre)

</div>

<divclass="editor-field">

@Html.EditorFor(model => model.Genre)
@Html.ValidationMessageFor(model => model.Genre)

</div>

<divclass="editor-1label">

@Html.LabelFor(model => model.Price)

</div>

<divclass="editor-field">

@Html.EditorFor(model => model.Price)
@Html.ValidationMessageFor(model => model.Price)
</div>

<p>
<inputtype="submit"value="Save"/>
</p>

</fieldset>

}

<div>
@Html.ActionLink("Back to List", "Index")
</div>

Notice how the view template has a @model MvcMovie.Models.Movie statement at the top of the file — this

specifies that the view expects the model for the view template to be of type Movie.

The scaffolded code uses several helper methods to streamline the HTML markup. TheHtml. LabelFor helper
displays the name of the field ("Title", "ReleaseDate", "Genre", or "Price"). TheHtml.EditorFor helper renders
an HTML <input> element. TheHtml.ValidationMessageFor helper displays any validation messages

associated with that property.

Run the application and navigate to the /Movies URL. Click anEdit link. In the browser, view the source for the

page. The HTML for the form element is shown below.

<formaction="/Movies/Edit/4"method="post"><fieldset>

<legend>Movie</legend>

<inputdata-val="true"data-val-number="The field ID must be a number."data-val-

required="The ID field is required."id="ID"name="ID"type="hidden"value="4"/>

<divclass="editor-1label">
<labelfor="Title">Title</label>
</div>

http://msdn.microsoft.com/en-us/library/gg401864(VS.98).aspx
http://msdn.microsoft.com/en-us/library/system.web.mvc.html.editorextensions.editorfor(VS.98).aspx
http://msdn.microsoft.com/en-us/library/system.web.mvc.html.validationextensions.validationmessagefor(VS.98).aspx

<divclass="editor-field">

<inputclass="text-box single-line"id="Title"name="Title"type="text"value="Rio
Bravo"/>
<spanclass="field-validation-valid"data-valmsg-for="Title"data-valmsg-
replace="true">

</div>

<divclass="editor-label">

<labelfor="ReleaseDate">ReleaseDate</label>

</div>

<divclass="editor-field">

<inputclass="text-box single-line"data-val="true"data-val-date="The field ReleaseDate
must be a date."data-val-required="The ReleaseDate field is
required."id="ReleaseDate"name="ReleaseDate"type="text"value="4/15/1959 12:00:00
AM" />
<spanclass="field-validation-valid"data-valmsg-for="ReleaseDate"data-valmsg-
replace="true">

</div>

<divclass="editor-label">

<labelfor="Genre">Genre</label>

</div>

<divclass="editor-field">

<inputclass="text-box single-line"id="Genre"name="Genre"type="text"value="Western"/>
<spanclass="field-validation-valid"data-valmsg-for="Genre"data-valmsg-
replace="true">

</div>

<divclass="editor-label">

<labelfor="Price">Price</label>

</div>

<divclass="editor-field">

<inputclass="text-box single-line"data-val="true"data-val-number="The field Price
must be a number."data-val-required="The Price field is
required."id="Price"name="Price"type="text"value="2.99"/>
<spanclass="field-validation-valid"data-valmsg-for="Price"data-valmsg-
replace="true">

</div>

<p>
<inputtype="submit"value="Save"/>
</p>

</fieldset>

</form>

The <input> elements are in an HTML <form> element whose action attribute is set to post to the

/Movies/Edit URL. The form data will be posted to the server when the Edit button is clicked.

Processing the POST Request
The following listing shows the HttpPost version of the Edit action method.

[HttpPost]
publicActionResultEdit(Movie movie)

{
if(ModelState.IsValid)

{
db.Entry(movie).State=EntityState.Modified;
db.SaveChanges();
returnRedirectToAction("Index");

}

returnView(movie);

}

The ASP.NET MVC model binder takes the posted form values and creates aMovie object that's passed as the
movie parameter. TheModelState.IsValid method verifies that the data submitted in the form can be used
to modify (edit or update) a Movie object. If the data is valid, the movie data is saved to the Movies collection
of the db (MovieDBContext instance). The new movie data is saved to the database by calling the
SaveChanges method ofMovieDBContext. After saving the data, the code redirects the user to the Index
action method of the MoviesController class, which displays the of movie collection, including the changes

just made..

If the posted values aren't valid, they are redisplayed in the form. TheHtml.ValidationMessageFor helpers

in the Edit.cshtml view template take care of displaying appropriate error messages.

http://msdn.microsoft.com/en-us/library/dd410405.aspx

| Edit - Mowie &pp

<« C @ localhosthd148/Mavies/Edit/2 v A
|

Register Login

Home About Contact

Edit
Title
Ghostbusters

ReleaseDate

ahc The field ReleaseDate must be a date.

Genre

Comedy

Price

‘ Z_,-fZl The field Price must be a number.

Save

Back to List

2 2012 - My ASP.RET MWC Application 3 [EE]

Note about locales If you normally work with a locale other than English, see Supporting ASP.NET MVC
Validation with Non-English Locales. The decimal field may require a common, not a decimal point. As a
temporary fix, you can add the globalization element to the projects root web.config file. The following code

shows the globalization element with the culture set to United States English.

http://msdn.microsoft.com/en-us/library/gg674880(VS.98).aspx
http://msdn.microsoft.com/en-us/library/gg674880(VS.98).aspx

<system.web>
<globalizationculture="en-US"/>
<!--elements removed for clarity-->

</system.web>

All the HttpGet methods follow a similar pattern. They get a movie object (or list of objects, in the case of
Index), and pass the model to the view. The Create method passes an empty movie object to the Create view.
All the methods that create, edit, delete, or otherwise modify data do so in the HttpPost overload of the
method. Modifying data in an HTTP GET method is a security risk, as described in the blog post entryASP.NET
MVC Tip #46 — Don't use Delete Links because they create Security Holes. Modifying data in a GET method also
violates HTTP best practices and the architectural REST pattern, which specifies that GET requests should not
change the state of your application. In other words, performing a GET operation should be a safe operation

that has no side effects and doesn't modify your persisted data.

Adding a Search Method and Search View

In this section you'll add a SearchIndex action method that lets you search movies by genre or name. This will
be available using the /Movies/Searchindex URL. The request will display an HTML form that contains input
elements that a user can enter in order to search for a movie. When a user submits the form, the action method

will get the search values posted by the user and use the values to search the database.

Displaying the SearchIndex Form

Start by adding a SearchIndex action method to the existingMoviesController class. The method will

return a view that contains an HTML form. Here's the code:

publicActionResultSearchIndex(string searchString)

{

var movies =from m in db.Movies

select m;

if(!String.IsNullOrEmpty(searchString))
{

http://stephenwalther.com/blog/archive/2009/01/21/asp.net-mvc-tip-46-ndash-donrsquot-use-delete-links-because.aspx
http://stephenwalther.com/blog/archive/2009/01/21/asp.net-mvc-tip-46-ndash-donrsquot-use-delete-links-because.aspx
http://stephenwalther.com/blog/archive/2009/01/21/asp.net-mvc-tip-46-ndash-donrsquot-use-delete-links-because.aspx

movies= movies.Where(s => s.Title.Contains(searchString));

}

returnView(movies);

}

The first line of the SearchIndex method creates the followingLINQ query to select the movies:

var movies =from m in db.Movies

select m;

The query is defined at this point, but hasn't yet been run against the data store.

If the searchString parameter contains a string, the movies query is modified to filter on the value of the

search string, using the following code:

if(!String.IsNullOrEmpty(searchString))
{

movies= movies.Where(s => s.Title.Contains(searchString));

}

The s => s.Title code above is aLambda Expression. Lambdas are used in method-basedLINQ queries as
arguments to standard query operator methods such asWhere method used in the above code. LINQ queries
are not executed when they are defined or when they are modified by calling a method such as Where or
OrderBy. Instead, query execution is deferred, which means that the evaluation of an expression is delayed
until its realized value is actually iterated over or theToList method is called. In the SearchIndex sample, the
query is executed in the SearchIndex view. For more information about deferred query execution, see Query

Execution.

Now you can implement the SearchIndex view that will display the form to the user. Right-click inside the
SearchIndex method and then click Add View. In the Add View dialog box, specify that you're going to pass
aMovie object to the view template as its model class. In the Scaffold template list, choose List, then click
Add.

http://msdn.microsoft.com/en-us/library/bb397926.aspx
http://msdn.microsoft.com/en-us/library/bb397687.aspx
http://msdn.microsoft.com/en-us/library/bb397926.aspx
http://msdn.microsoft.com/en-us/library/system.linq.enumerable.where.aspx
http://msdn.microsoft.com/en-us/library/bb342261.aspx
http://msdn.microsoft.com/en-us/library/bb738633.aspx
http://msdn.microsoft.com/en-us/library/bb738633.aspx

Sdd Views
Wiewns narme:
Searchlndex
Wiewy engine:

[Ramr (CSHTMLY 5

[¥] Create a strangly-typed view

Model class:

Mo (Moo bovie bodels) -

Scaffold ternplate:

[List - [¥] Reference script libraries

[] Create as a partial wiew

[¥] Use a layout or raster page:

-

(Leave ermpty if it is set in a Razor _viewstart file)

tertPlaceHaolder ID:

tainContent

| add || Concel

When you click the Add button, the Views\Movies\Searchindex.cshtml view template is created. Because you

selected List in the Scaffold template list, Visual Studio Express automatically generated (scaffolded) some

default markup in the view. The scaffolding created an HTML form. It examined the Movie class and created

code to render <label> elements for each property of the class. The listing below shows the Create view that

was generated:

@model IEnumerable<MvcMovie.Models.Movie>

@{

ViewBag.Title = "SearchIndex";

<h2>SearchIndex</h2>

<p>

@Html.ActionLink("Create New", "Create")

</p>
<table>
<tr>
<th>

Title
</th>
<th>

ReleaseDate
</th>
<th>

Genre
</th>
<th>

Price
</th>
<th></th>
</tr>

@foreach (var item in Model) {

<tr>

<td>
@Html.DisplayFor(modelItem =>
</td>

<td>
@Html.DisplayFor(modelItem =>
</td>

<td>
@Html.DisplayFor(modelItem =>
</td>

<td>
@Html.DisplayFor(modelItem =>
</td>

<td>

item.Title)

item.ReleaseDate)

item.Genre)

item.Price)

@Html.ActionLink("Edit", "Edit", new { id=item.ID }) |
@Html.ActionLink("Details", "Details", new { id=item.ID }) |
@Html.ActionLink("Delete", "Delete", new { id=item.ID })

</td>
</tr>

</table>

Run the application and navigate to /Movies/Searchindex. Append a query string such as
?searchString=ghost to the URL. The filtered movies are displayed.

| searchindex - Movie f&pp

&= C | @ localhost64148/Movies/Searchindex?searchString=ghost 95 | N

-
Register Login

Home About Contact

Searchlndex
Create MNew
Title ReleazeDate Genre Price

Ghasthusters 171171984 12:00:00 AM Comedy 7.99 Edit | Details | Delete
Ghosthusters 2 2/23/1986 12:00:00 AM Comedy 399 Edit | Details | Delete

@ 2012 - My ASPMET MYC Application £ E

If you change the signature of the SearchIndex method to have a parameter named id, the id parameter will

match the{id} placeholder for the default routes set in the Globalasax file.

{controller}/{action}/{id}

The original SearchIndex method looks like this::

publicActionResultSearchIndex(string searchString)

{

var movies =from m in db.Movies

select m;

if(!String.IsNullOrEmpty(searchString))
{

movies= movies.Where(s => s.Title.Contains(searchString));

}

returnView(movies);

}

The modified SearchIndex method would look as follows:

publicActionResultSearchIndex(string id)
{

string searchString = id;
var movies =from m in db.Movies

select m;

if(!String.IsNullOrEmpty(searchString))
{

movies= movies.Where(s => s.Title.Contains(searchString));

}

returnView(movies);

}

You can now pass the search title as route data (a URL segment) instead of as a query string value.

| searchlndex - Mowvie Spp

&= C | @ localhost:54148/Movies/Searchindex/ghost

Searchindex
Create Mew
Title ReleaseDate Genre Price

Home About

w A

Register

Log in

Contact

Details | Delete

Ghostbusters 1,/11/1984 12:00:00 AM Comedy 7.99 Edit
Ghosthusters 2 2/23/1986 12:00:00 AM Comedy 3.99 Edit

Details | Delete

2 2012 - My ASPMET MWEC Application

However, you can't expect users to modify the URL every time they want to search for a movie. So now you
you'll add Ul to help them filter movies. If you changed the signature of the SearchIndex method to test how

to pass the route-bound ID parameter, change it back so that your SearchIndex method takes a string

parameter named searchString:

publicActionResultSearchIndex(string searchString)

{

var movies =from m in db.Movies

select m;

if(!String.IsNullOrEmpty(searchString))
{

movies= movies.Where(s => s.Title.Contains(searchString));

}

returnView(movies);

}

Open the Views\Movies\Searchindex.cshtml file, and just after @Htm1l.ActionLink("Create New",
"Create"), add the following:

@using (Html.BeginForm()){
<p> Title: @Html.TextBox("SearchString")

<inputtype="submit"value="Filter"/></p>

}

The following example shows a portion of the Views\Movies\Searchindex.cshtml file with the added filtering

markup.

@model IEnumerable<MvcMovie.Models.Movie>

@{

ViewBag.Title = "SearchIndex";

<h2>SearchIndex</h2>

<p>
@Html.ActionLink("Create New", "Create")

@using (Html.BeginForm()){
<p> Title: @Html.TextBox("SearchString")

<inputtype="submit"value="Filter"/></p>

}
</p>

The Html.BeginForm helper creates an opening <form> tag. The Html.BeginForm helper causes the form to

post to itself when the user submits the form by clicking the Filter button.

Run the application and try searching for a movie.

| searchlndex - Mowvie Spp

&= C | @ localhost:54148/Movies/Searchindex/ghost kAR

Register Login

Home About Contact

Searchindex
Create Mew
Title ReleaseDate Genre Price

Details | Delete
Details | Delete

Ghostbusters 1,/11/1984 12:00:00 AM Comedy 7.99 Edit
Ghosthusters 2 2/23/1986 12:00:00 AM Comedy 3.99 Edit

@ 2012 - My ASP.NET MYC Application el v

There's no HttpPost overload of the SearchIndex method. You don't need it, because the method isn't

changing the state of the application, just filtering data.

You could add the following HttpPost SearchIndex method. In that case, the action invoker would match
the HttpPost SearchIndex method, and the HttpPost SearchIndex method would run as shown in the

image below.

[HttpPost]

publicstringSearchIndex(FormCollection fc,string searchString)

{

return”<h3> From [HttpPost]SearchIndex: "+ searchString +"</h3>";

}

[localhost:56891 (Movies/Se... »

« C | @ locahost: 56891 Movies/Searchindex v X

From [HtpPost]Searchindex: ghost

However, even if you add this HttpPost version of the SearchIndex method, there's a limitation in how this
has all been implemented. Imagine that you want to bookmark a particular search or you want to send a link to
friends that they can click in order to see the same filtered list of movies. Notice that the URL for the HTTP
POST request is the same as the URL for the GET request (localhost:xxxxx/Movies/SearchIndex) -- there's no
search information in the URL itself. Right now, the search string information is sent to the server as a form field

value. This means you can't capture that search information to bookmark or send to friends in a URL.

The solution is to use an overload of BeginForm that specifies that the POST request should add the search
information to the URL and that is should be routed to the HttpGet version of the SearchIndex method.

Replace the existing parameterless BeginForm method with the following:

@using (Html.BeginForm("SearchIndex","Movies",FormMethod.Get))

BHoml.ActionLink("Create Hew", "Create”)
fusing (Html.BeginForm{"SearchIndex”, "Moviea™, FormMethod. Eet:h]

: 4 A 5of13 ¥ (extension) MvcFormn HtmiHelper.BeginFormistring actionMame, string controllerilame, FormMethod method)
i E:. Writes an opening <form® tag to the response. When the user submits the form, the request will be processed by an action method.
<in method: The HTTP method for processing the form, either GET or POST.

Now when you submit a search, the URL contains a search query string. Searching will also go to the HttpGet

SearchIndex action method, even if you have a HttpPost SearchIndex method.

| searchlndex -Mowie Spp

&~ C | @ |localhost:1234/Movies/SearchIndex?SearchString=Ghost Te A
|

Register Login

Home About Contact

Searchlndex
Create Mew
Title: Ghost
Title ReleaseDate Genre Price

Ghostbusters 1/11/1984 12:00:00 AN Comedy 7.99
Ghosthusters 2 2/23/1986 12:00:00 AM Comedy 3,99

Details | Delete

Edit |
Edit | Details | Delete

@ 2012 - hy A5FMET RYWE Application

Adding Search by Genre

If you added the HttpPost version of the SearchIndex method, delete it now.

Next, you'll add a feature to let users search for movies by genre. Replace the SearchIndex method with the

following code:

publicActionResultSearchIndex(string movieGenre,string searchString)

{

varGenrelLst=newList<string>();

varGenreQry=from d in db.Movies

orderby d.Genre

select d.Genre;
Genrelst.AddRange(GenreQry.Distinct());

ViewBag.movieGenre =newSelectlList(GenrelLst);

var movies =from m in db.Movies

select m;

if(!String.IsNullOrEmpty(searchString))
{

movies= movies.Where(s => s.Title.Contains(searchString));

}

if(string.IsNullOrEmpty(movieGenre))
returnView(movies);

else

{

returnView(movies.Where(x => x.Genre== movieGenre));

}

This version of the SearchIndex method takes an additional parameter, namely movieGenre, The first few

lines of code create aList object to hold movie genres from the database.

The following code is a LINQ query that retrieves all the genres from the database.

varGenreQry=from d in db.Movies
orderby d.Genre

select d.Genre;

The code uses the AddRange method of the generic List collection to add all the distinct genres to the list.
(Without the Distinct modifier, duplicate genres would be added — for example, comedy would be added

twice in our sample). The code then stores the list of genres in the ViewBag object.

The following code shows how to check the movieGenre parameter. If it's not empty, the code further

constrains the movies query to limit the selected movies to the specified genre.

http://msdn.microsoft.com/en-us/library/z883w3dc.aspx
http://msdn.microsoft.com/en-us/library/6sh2ey19.aspx

if(string.IsNullOrEmpty(movieGenre))
returnView(movies);
else

{

returnView(movies.Where(x => x.Genre== movieGenre));

}

Adding Markup to the SearchIndex View to Support Search by Genre

Add an Html.DropDownlList helper to the Views\Movies\Searchindex.cshtml file, just before the TextBox

helper. The completed markup is shown below:

<p>
@Html.ActionLink("Create New", "Create")
@using (Html.BeginForm("SearchIndex","Movies",FormMethod.Get)){
<p>Genre: @Html.DropDownList("movieGenre", "All")
Title: @Html.TextBox("SearchString")
<inputtype="submit"value="Filter"/></p>
}
</p>

Run the application and browse to /Movies/Searchindex. Try a search by genre, by movie name, and by both

criteria.

In this section you examined the CRUD action methods and views generated by the framework. You created a
search action method and view that let users search by movie title and genre. In the next section, you'll look at
how to add a property to the Movie model and how to add an initializer that will automatically create a test

database

Adding a New Field to the Movie Model and
Table

In this section you'll make some changes to the model classes and learn how you can update the database

schema to match the model changes.

Adding a Rating Property to the Movie Model

Start by adding a new Rating property to the existing Movie class. Open the Models\Movie.cs file and add the
Rating property like this one:

publicstringRating{get;set;}

The complete Movie class now looks like the following code:

publicclassMovie
{
publicint 1D {get;set;}

publicstringTitle{get;set;}
publicDateTimeReleaseDate{get;set;}
publicstringGenre{get;set;}
publicdecimalPrice{get;set;}
publicstringRating{get;set;}

}

Recompile the application using the Build > Build Movie menu command.

Now that you've updated the Model class, you also need to update the \Views\Movies\Index.cshtml and

\Views\Movies\Create.cshtml view templates in order to display the new Rating property in the browser view.

Open the \Views\Movies\Index.cshtml file and add a <th>Rating</th> column heading just after the Price
column. Then add a <td> column near the end of the template to render the @item.Rating value. Below is

what the updated Index.cshtml view template looks like:

@model IEnumerable<MvcMovie.Models.Movie>

@

ViewBag.Title = "Index";

<h2>Index</h2>

<p>

@Html.ActionLink("Create New", "Create")

</p>

<table>

<tr>
<th>
@Html
</th>
<th>
@Html
</th>
<th>
@Html
</th>
<th>
@Html
</th>
<th>
@Html
</th>

.DisplayNameFor(model =>

.DisplayNameFor(model =>

.DisplayNameFor(model =>

.DisplayNameFor(model =>

.DisplayNameFor(model =>

<th></th>

</tr>

@foreach (var item in Model) {

<tr>
<td>

model.Title)

model.ReleaseDate)

model.Genre)

model.Price)

model.Rating)

@Html.DisplayFor(modelItem => item.Title)

</td>
<td>

@Html.DisplayFor(modelItem => item.ReleaseDate)

</td>

<td>

@Html.DisplayFor(modelItem => item.Genre)

</td>

<td>

@Html.DisplayFor(modelItem => item.Price)

</td>

<td>

@Html.DisplayFor(modelItem => item.Rating)

</td>

<td>

@Html.ActionLink("Edit", "Edit", new { id=item.ID }) |
@Html.ActionLink("Details", "Details", new { id=item.ID }) |
@Html.ActionLink("Delete", "Delete", new { id=item.ID })
</td>

</tr>

</table>

Next, open the \Views\Movies\Create.cshtml file and add the following markup near the end of the form. This

renders a text box so that you can specify a rating when a new movie is created.

<divclass="editor-label">

@Html.LabelFor(model => model.Rating)

</div>

<divclass="editor-field">

@Html.EditorFor(model => model.Rating)
@Html.ValidationMessageFor(model => model.Rating)
</div>

Managing Model and Database Schema Differences

You've now updated the application code to support the new Rating property.

Now run the application and navigate to the /Movies URL. When you do this, though, you'll see one of the

following errors:

e 5 Eﬂ (2! The model backing the 'Movi... . fr kR

Server Error in '/’ Application.

The model backing the 'MovieDBContext' context has changed
since the database was created. Either manually delete/update
the database, or call Database.SetInitializer with an
IDatabaselnitializer instance. For example, the
DropCreateDatabaselfModelChanges strategy will automatically
delete and recreate the database, and optionally seed it with new
data.

m

Description: An unhandled exception occurred during the execution of the current web reguest. Please review the stack
trace for more information about the error and where it originated in the code.

Exception Details: System.invalidOperationException: The model backing the ‘MovieDBContext' context has changed since
the database was created. Either manually delete/update the database, or call Database. Setinitializer with an [Databaseinitializer
instance. For example, the DropCreateDatabaselfModelChanges strategy will automatically delete and recreate the databaze, and
optionally seed it with new data.

Source Error:

Line 10:

Line 11: public ActionResult Index() {

L¥me 12 var movies = from m in db.Movies

Line 13: where m.ReleaseDate > new DateTime(1984, &6, 1)
Line 14: select m;

Source File: C\Temp\c_projectic#projectiMvcMovig\Controliers\MoviesController.cs Line: 12

Stack Trace:

1 | 1] 3

You're seeing this error because the updated Movie model class in the application is now different than the

schema of the Movie table of the existing database. (There's no Rating column in the database table.)

By default, when you use Entity Framework Code First to automatically create a database, as you did earlier in
this tutorial, Code First adds a table to the database to help track whether the schema of the database is in sync
with the model classes it was generated from. If they aren't in sync, the Entity Framework throws an error. This

makes it easier to track down issues at development time that you might otherwise only find (by obscure

errors) at run time. The sync-checking feature is what causes the error message to be displayed that you just

saw.
There are two approaches to resolving the error:

1. Have the Entity Framework automatically drop and re-create the database based on the new model class
schema. This approach is very convenient when doing active development on a test database; it allows
you to quickly evolve the model and database schema together. The downside, though, is that you lose

existing data in the database — so you don't want to use this approach on a production database!

2. Explicitly modify the schema of the existing database so that it matches the model classes. The advantage
of this approach is that you keep your data. You can make this change either manually or by creating a

database change script.

For this tutorial, we'll use the first approach — you'll have the Entity Framework Code First automatically re-

create the database anytime the model changes.

Automatically Re-Creating the Database on Model Changes

Let's update the application so that Code First automatically drops and re-creates the database anytime you

change the model for the application.

Warning You should enable this approach of automatically dropping and re-creating the database only when
you're using a development or test database, and never on a production database that contains real data. Using

it on a production server can lead to data loss.

Stop the debugger. In Solution Explorer, right click the Models folder, select Add, and then select New Item.

@] MvcMovie
B & Properties
P =8 References

M 2pp Data
bl Content
b ol Controllers
1 b M Images
&1 View in Browser (Internet Explorer) Ctrl#Shift+W AccountModels.cs
Browrse With.., pts
Corvert to Web Application = -
con.ico
B Run Recipe... Add ¥ balasax
T Newltem... Ctrl + Shift+A Scope to This kages,config
O Essting kem.. Shift+Altsd B MewView £scantig
Add A3P.MET Folder » & GetLatestVersion (Recursive)
‘Wl Mew Folder & Get Specific Version...
W Check Out for Edit..
) View History
Exclude From Project
& Cut Ctrl+X
o Copy Ctrl=C
2 Delete Del

I Rename
€ Open Folder in Windows Explorer

& Properties Alt+Enter

In the Add New Item dialog, select Class then name the class "Movielnitializer". Update the

MovielInitializer class to contain the following code:

usingSystem;
usingSystem.Collections.Generic;

usingSystem.Data.Entity;

namespaceMvcMovie.Models{
publicclassMovieInitializer:DropCreateDatabaseIfModelChanges<MovieDBContext>{
protectedoverridevoidSeed(MovieDBContext context){

var movies =newlList<Movie>{

newMovie{Title="When Harry Met Sally",
ReleaseDate=DateTime.Parse("1989-1-11"),

Genre="Romantic Comedy",

Rating="R",

Price=7.99M},
newMovie{Title="Ghostbusters ",
ReleaseDate=DateTime.Parse("1984-3-13"),
Genre="Comedy",

Rating="R",

Price=8.99M},

newMovie{Title="Ghostbusters 2",
ReleaseDate=DateTime.Parse("1986-2-23"),
Genre="Comedy",

Rating="R",

Price=9.99M},

newMovie{Title="Rio Bravo",
ReleaseDate=DateTime.Parse("1959-4-15"),

Genre="Western",

Rating="R",
Price=3.99M},
}s

movies.ForEach(d => context.Movies.Add(d));
}
}
}

The MovielInitializer class specifies that the database used by the model should be dropped and
automatically re-created if the model classes ever change.DropCreateDatabaselfModelChanges initializer
specifies the DB should be re-created only if the schema changes. Alternatively, you could use
theDropCreateDatabaseAlways initializer to always recreate and re-seed the database with data the first time
that a context is used in the application domain. TheDropCreateDatabaseAlways approach is useful in some
integration testing scenarios. The code that you inserted into the Movielnitializer class includes a includes a
Seed method that specifies some default data to automatically add to the database any time it's created (or re-
created). This provides a useful way to populate the database with some test data, without requiring you to

manually populate it each time you make a model change.

http://msdn.microsoft.com/en-us/library/gg679604(v=VS.103).aspx
http://msdn.microsoft.com/en-us/library/gg679506(VS.103).aspx
http://msdn.microsoft.com/en-us/library/gg679506(VS.103).aspx

Now that you've defined the MovieInitializer class, you'll want to wire it up so that each time the
application runs, it checks whether the model classes are different from the schema in the database. If they are,

you can run the initializer to re-create the database to match the model and then populate the database with

the sample data.

Open the Global.asax filet:

20 kAechdovie - Microsoft Visual Studio 11 Express Beta for Weh — | [=] |&

File Edit ‘iew Project Debug Tearn Tools Unit Test Window Cuick Launch (Ctrl+0) 2
Help

Q- | i ad v | B Internet Explarer = Debug - | M ; | ; ;

Globalasaxcs & W X » @ SOLUTIO. ¥ B X 3

X ; T - s i . = > T

4 hlwchdovie Muclpplication = @ RegisteriGlobalFilters{GlobalFilterColle = ma e =)

using System.Web.Mvc; o B P~ g

using System.Web.Optimization; - o

<E] MvcMovie
b @& Properties

Elnamespace MvcMovie [=@ References
{ B M ~pp Data

using System.Web.Routing;

= J// Note: For instructions on enabling IIS6 or IIS7 clas: P El Content
S wvisit hittp://go.microsoft. com/?LinkId=9394881 b ol Controllers
: & : e . b Ml Images
E public class MvcApplication : System.Web.Httpfpplicatior b ol Models
I :
E public static wvoid RegisterGlobalFilters(GlobalFilte .t
- ; b M Views

&[] favicon.ico

filters.Add(new HandleErrorAttribute(}};

¥
EY® packages.confi
E public static void RegisterRoutes(RouteCollection rc b ay® eb.config
1
routes.IgnoreRoute(" {resource}.axd/{*pathInfo}"]
routes.MapHttpRoute(=
name: “"Defaultapi”,
routeTemplate: "api/{controller}/{id}",
defaults: new { id = RouteParameter.Optional
/H
routes.MapRoute(
name: “"Default™,
url: “{controller}/{action}/{id}",
defaults: new { controller = "Home", action
/H
¥
E protected void Application_Start()
1
AreaRegistration.RegisterAllAreas();
/{ Use LocalDB for Entity Framework by default
Database.DefaultConnectionFactory = new SqlConne] [rm———y
100% = 4| 1] | b TEAME... SOLUTL.

ERROR LIST QUTPUT FIMND RESULTS1
Ready Lnl Coll Chil IS

The Global asax file contains the class that defines the entire application for the project, and contains an

Application_Start event handler that runs when the application first starts.

At the beginning of the Application_Start method, add a call to Database.SetInitializer as shown

below:

protectedvoidApplication_Start()
{

Database.SetInitializer<MovieDBContext>(newMovieInitializer());

AreaRegistration.RegisterAllAreas();

// Use LocalDB for Entity Framework by default
Database.DefaultConnectionFactory=newSqlConnectionFactory("Data

Source=(localdb)\v11.0; Integrated Security=True; MultipleActiveResultSets=True");

RegisterGlobalFilters(GlobalFilters.Filters);
RegisterRoutes(RouteTable.Routes);

BundleTable.Bundles.RegisterTemplateBundles();
}

Put the cursor on the red squiggly line (on MovieDBContext, orMovieInitializer)right click and select

Resolve, then using MvcMovie.Models;

protected void Application_Start()

i

Database.SetInitializer<MovieDBContexts (new MovieInitializer());
b=l s=lbppn et gy

AreaRegistration.RegisterAllA

// Use LocalDB for Entity Fra
Database.DefaultConnectionFac

RegisterGlobalFilters(GlobalF

RegisterRoutes(RouteTable.Rou
BundleTable.Bundles.RegisterT
¥
h
¥

oy

nnnnn L

Fesalwe

Refactor

Generate

Organize Usings

Fun Unit Tests
Comment Selection
Uncornment Selection
Insert Snippet...
Surround MYith,.,

GGo To Definition
Find All References

Breakpoint

Run To Cursaor

S

i

Put Flagaed | reads [0 LUFsor

Cut

Copy
Paste

Cutlining

Zource Control

)

>l Ry

using kwvchdovie b
bebechdovie bodels. b

" dlutyiwvil.wy, LhiLegidl

Ctrl+R, T

Ctrl+E, Ctrl+C
Cel+K, Ctrl+1
Crel+K, Chrl +x
Crel+K, Crl+5

F12
Shift+F12

Ctrl+F10

Crl +3
Chrl+C
Crl +4

Alternatively, add the using statement to the top of the file. The using statement references the namespace

where our MovieInitializer class lives:

usingMvcMovie.Models;// MovieInitializer

The Database.SetInitializer statement you just added indicates that the database used by the

MovieDBContext instance should be automatically deleted and re-created if the schema and the database

don't match. And as you saw, it will also populate the database with the sample data that's specified in the

MovieInitializer class.

Close the Global asax file.

Re-run the application and navigate to the /Movies URL. When the application starts, it detects that the model

structure no longer matches the database schema. It automatically re-creates the database to match the new

model structure and populates the database with the sample movies:

B
G | http://localhost: 122 O = 2 G || | Index -Mavie &pp | | 7 4o
Register Login
Home About Contact
Index
Create Mew
Title ReleaseDate Genre Price Rating
When Harry Met Sally 1,/11/19389 12:00:00 AM Romantic Comedy 7.99 R Edit | Details | Delete
Ghostbusters 3/13/1984 12:00:00 AM Comedy 899 R Edit | Details | Delete
Ghostbusters 2 2/23/1986 12:00:00 AM Comedy 999 R Edit | Details | Delete
Rioc Bravo A4/15/1959 12:00:00 AM Western 399 R Edit | Details | Delete
2012 - Wy ASP.NET WMVC Application

Click the Create New link to add a new movie. Note that you can add a rating.

L BN EER 5
G'_ |1 hitpAocalhost: © = @ C X ||| Create - Mavie App

Register |Login

Create

Title
Rio Bravo |l
ReleaseDate
/15/2012

Genre

m

Western

Price

999

Rating

Back to List

2 2012 - My ASP.NET MVC Application

Click Create. The new movie, including the rating, now shows up in the movies listing:

TR | oo |

i | Index - Maowie App +
& P | localhost1234/Movies - v | Pl B
B :
Register Login

Home About Contact

Index

Create New

Title ReleaseDate Genre Price Rating

When Harmy Met Sally 1/11/1989 12:00:00 AM Romantic Comedy 7.99 R Edit | Details | Delete

Ghostbusters 3/13/1984 12:00:00 AM Comedy B.99 R Edit | Details | Delete

Ghostbusters 2 2/23/1986 12:00:00 AM Comedy g9.99 R Edit | Details | Delete

Rio Brawvo 4/15/1959 12:00:00 AN Western 3.95 R Edit | Details | Delete

Rio Brawo Il 371572012 12:00:00 AN Western 9.99 G Edit | Details | Delete

@ 2012 - My ASP.NET MVC Application

You should also add the Rating field to the Edit view template.

In this section you saw how you can modify model objects and keep the database in sync with the changes. You
also learned a way to populate a newly created database with sample data so you can try out scenarios. Next,
let's look at how you can add richer validation logic to the model classes and enable some business rules to be

enforced.

Adding Validation to the Model

In this this section you'll add validation logic to the Movie model, and you'll ensure that the validation rules are

enforced any time a user attempts to create or edit a movie using the application.

Keeping Things DRY

One of the core design tenets of ASP.NET MVC is DRY ("Don't Repeat Yourself"). ASP.NET MVC encourages you
to specify functionality or behavior only once, and then have it be reflected everywhere in an application. This
reduces the amount of code you need to write and makes the code you do write less error prone and easier to

maintain.

The validation support provided by ASP.NET MVC and Entity Framework Code First is a great example of the
DRY principle in action. You can declaratively specify validation rules in one place (in the model class) and the

rules are enforced everywhere in the application.

Let's look at how you can take advantage of this validation support in the movie application.

Adding Validation Rules to the Movie Model

You'll begin by adding some validation logic to the Movie class.

Open the Movie.cs file. Add a using statement at the top of the file that references

theSystem.ComponentModel.DataAnnotations namespace:

usingSystem.ComponentModel.DataAnnotations;

Notice the namespace does not contain System.Web. DataAnnotations provides a built-in set of validation

attributes that you can apply declaratively to any class or property.

Now update the Movie class to take advantage of the built-inRequired StringlLength, andRange validation

attributes. Use the following code as an example of where to apply the attributes.

publicclassMovie{
publicint ID {get;set;}

[Required]

http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.requiredattribute.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.stringlengthattribute.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.rangeattribute.aspx

publicstringTitle{get;set;}

[DataType(DataType.Date)]
publicDateTimeReleaseDate{get;set;}

[Required]
publicstringGenre{get;set;}

[Range(1,100)]
[DataType(DataType.Currency)]

publicdecimalPrice{get;set;}

[StringlLength(5)]
publicstringRating{get;set;}
}

The validation attributes specify behavior that you want to enforce on the model properties they are applied to.
The Required attribute indicates that a property must have a value; in this sample, a movie has to have values
for the Title, ReleaseDate, Genre, and Price properties in order to be valid. The Range attribute constrains
a value to within a specified range. The StringlLength attribute lets you set the maximum length of a string
property, and optionally its minimum length. Intrinsic types (such as decimal, int, float, DateTime) are
required by default and don't need the Requiredattribute.

Code First ensures that the validation rules you specify on a model class are enforced before the application
saves changes in the database. For example, the code below will throw an exception when the SaveChanges
method is called, because several required Movie property values are missing and the price is zero (which is out

of the valid range).

MovieDBContext db =newMovieDBContext();
Movie movie =newMovie();
movie.Title="Gone with the Wind";

movie.Price=0.0M;

db.Movies.Add(movie);

db.SaveChanges();// <= Will throw validation exception

Having validation rules automatically enforced by the .NET Framework helps make your application more
robust. It also ensures that you can't forget to validate something and inadvertently let bad data into the

database

Here's a complete code listing for the updated Movie.cs file:

usingSystem;
usingSystem.Data.Entity;

usingSystem.ComponentModel.DataAnnotations;

namespaceMvcMovie.Models{
publicclassMovie{
publicint ID {get;set;}

[Required]
publicstringTitle{get;set;}

[DataType(DataType.Date)]
publicDateTimeReleaseDate{get;set;}

[Required]
publicstringGenre{get;set;}

[Range(1,100)]
[DataType(DataType.Currency)]
publicdecimalPrice{get;set;}

[StringlLength(5)]
publicstringRating{get;set;}
}

publicclassMovieDBContext:DbContext{
publicDbSet<Movie>Movies{get;set;}

}
}

Validation Error UI in ASP.NET MVC

Re-run the application and navigate to the /Movies URL.

Click the Create New link to add a new movie. Fill out the form with some invalid values and then click the

Create button.

(s ==)

| Create - Movie Bpp | s | 3

= || lacalhost:1234/Moavies/Create - E!I - Bing Pl B

S _

Register Login

Home About Contact

Create
Title

ReleaseDate

m

HYZ The field ReleaseDate must

he a date.
Senre

Price

129 Price must be hetween %1

and $100
Rating

Frobably G The field Rating must be a

string with a maximum length of 5.

..............................

Back to List

Notice how the form has automatically used a red border color to highlight the text boxes that contain invalid
data and has emitted an appropriate validation error message next to each one. The errors are enforced both

client-side (using JavaScript) and server-side (in case a user has JavaScript disabled).

A real benefit is that you didn't need to change a single line of code in theMoviesController class or in the
Create.cshtml view in order to enable this validation UL The controller and views you created earlier in this
tutorial automatically picked up the validation rules that you specified by using validation attributes on the

properties of the Movie model class.

You might have noticed for the properties Title and Genre, the required attribute is not enforced until you
submit the form (hit the Create button), or enter text into the input field and removed it. For a field which is
initially empty (such as the fields on the Create view) and which has only the required attribute and no other

validation attributes, you can do the following to trigger validation:

1. Tab into the field.

2. Enter some text.

3. Tab out.

4. Tab back into the field.
5. Remove the text.

6. Tab out.

The above sequence will trigger the required validation without hitting the submit button. Simply hitting the
submit button without entering any of the fields will trigger client side validation. The form data is not sent to
the server until there are no client side validation errors. You can test this by putting a break point in the HTTP

Post method or using thefiddler tool or the IE 9F12 developer tools.

http://fiddler2.com/fiddler2/
http://msdn.microsoft.com/en-us/ie/aa740478

| | Create - Movie Spp

[+]

e e |

{- _ | localhost1234/Movies Create

- e

- Ging P 1 -

.

Register Login

Create
Title

The Title field is required.

ReleaseDate

21102012

|.'|.1.

(senre

The Genre field is required.

Price
7.99
Rating

(&2

Create

Back to List

B 2012 - My ASPMET MWE Application o

How Validation Occurs in the Create View and Create Action Method

You might wonder how the validation UI was generated without any updates to the code in the controller or
views. The next listing shows what the Create methods in the MovieController class look like. They're

unchanged from how you created them earlier in this tutorial.

//
// GET: /Movies/Create

publicActionResultCreate()
{

returnView();

}

//
// POST: /Movies/Create

[HttpPost]
publicActionResultCreate(Movie movie)

{
if(ModelState.IsValid)

{
db.Movies.Add(movie);
db.SaveChanges();

returnRedirectToAction("Index");

}

returnView(movie);

}

The first (HTTP GET) Create action method displays the initial Create form. The second ([HttpPost]) version
handles the form post. The second Create method (The HttpPost version) calls ModelState.IsValid to
check whether the movie has any validation errors. Calling this method evaluates any validation attributes that
have been applied to the object. If the object has validation errors, the Create method re-displays the form. If
there are no errors, the method saves the new movie in the database. In our movie example we are using, the
form is not posted to the server when their are validation errors detected on the client side; the second Create
method is never called. If you disable JavaScript in your browser, client validation is disabled and the HTTP

POST Create method calls ModelState.IsValid to check whether the movie has any validation errors.

You can set a break point in the HttpPost Create method and verify the method is never called, client side
validation will not submit the form data when validation errors are detected. If you disable JavaScript in your

browser, submit the form with errors, the break point will be hit. You still get full validation without JavaScript.

Internet Options il

| General |EEEUH'I':-"_I Privacy | Content | Connections I Programs | Advanced |

Select a zone ko view ar change security sekkings,

@ & v O

Inkernet Local intranet Trusted sites Restricked
sites

= found on your inkranet,

Security level for this zone

Custom

Zuskam setkings.
- To change the settings, click Custom lewvel,
- To use the recommended settings, click Default lewvel,

[|Enable Pratected Maode {requires restarting Inkernet Explarer)

Cuskom level... | Default level]

Local intranet
This zone is for all wehsites that are

| Reset all zones to default level

"

W -

Security Settings - Local Intranet Zane

Settings

[

|| websites in less privileged web content zone can navigate in »
(71 Disable
@ Enable
(71 Prampt
Scripting
=, | active scripking
I:i;l
(71 Enable
() Prompt
= | Allovs Programmatic clipboard access
(") Disable
@ Enable
(") Prompt
= | Allows status bar updates via script
(") Disable

-'.E'n'.__l:n ahla
L i | 3

=
=B

*Takes effect after vou restart Internet Explarer

Reset cuskom setkings

Reseltal | Medium-low (default) b | [Reset...

]

[8] 4] [Cancel

[HttpPaost]

public ActionResult Create(Mowie movie)

{ iﬁ bodelStateIsValid| false =

i
Bf (Model3tate.IsValid)|
db.Movies.Add(movie) ;
db. 3awveChanges() ;
return RedirectTodction("Index™):
'
return View(mowvie];
¥

The following image shows how to disable JavaScript in the FireFox browser.

o

Optichs

-

General Tahs

=i

Caontent | Applications

a0

L 4}

Privacy Security Sync Sdvanced

[¥] Block pop-up windous

[¥] Load irmages automatically

[¥] Enable lawalcript

Default font:

Languages

Fonts & Colors

Exceptions...
Exceptions...

Advanced...

il

Tirmes Mew Roman

v] S |16 - |

Advanced..,

_

Choose your preferred language for displaying pages

Colors..

Choose,.,

0]] | Cancel

| Help

The following image shows how to disable JavaScript with the Chrome browser.

yl ﬁ?,ﬂtﬁ‘fﬂhﬁ”é':ﬂ@ﬁ k‘f‘\ Optians - Cantent Settings ~ L
L C | © chrome://settings/content

Options U Content Settings

Search options |

Pr Cookies @ Allow local data to be set {
Basics O Allow local data to be set f
" Block sites from setting ar
["| Block third-party cookies fi

FPersonal Stuff

Under the Hood [7] Clear cookies and other sil
Extensions | Manage exceptions. .. | |
Images @ Show all images (recomme

!) Do not show any images

Manage exceptions. .. |
|

wi
Ce
JavaScript @ Allow all sites to run Javag
) Do not allow any site to ru||_
Manage exceptions. .. |
|
Neg
Handlers @ Allow sites to ask to becor
) Do not allow any site to ha
Manage handlers. .. |
|
Tri
Plug-ins @ Run automatically {recomr
| g
' Block all
D¢ | Manage exceptions. .. |
Digable indiwidual plug-ins... -
< | m | »

Below is the Create.cshtml view template that you scaffolded earlier in the tutorial. It's used by the action

methods shown above both to display the initial form and to redisplay it in the event of an error.

@model MvcMovie.Models.Movie

@{

ViewBag.Title = "Create";
}
<h2>Create</h2>

<scriptsrc="@Url.Content("~/Scripts/jquery.validate.min.js")"></script>

<scriptsrc="@Url.Content("~/Scripts/jquery.validate.unobtrusive.min.js")"></script>

@using (Html.BeginForm()) {
@Html.ValidationSummary(true)

<fieldset>

<legend>Movie</legend>

<divclass="editor-label">

@Html.LabelFor(model => model.Title)

</div>

<divclass="editor-field">

@Html.EditorFor(model => model.Title)
@Html.ValidationMessageFor(model => model.Title)

</div>

<divclass="editor-label">

@Html.LabelFor(model => model.ReleaseDate)

</div>

<divclass="editor-field">

@Html.EditorFor(model => model.ReleaseDate)
@Html.ValidationMessageFor(model => model.ReleaseDate)

</div>

<divclass="editor-label">
@Html.LabelFor(model => model.Genre)
</div>

<divclass="editor-field">
@Html.EditorFor(model => model.Genre)

@Html.vValidationMessageFor(model => model.Genre)

</div>

<divclass="editor-label">

@Html.LabelFor(model => model.Price)

</div>

<divclass="editor-field">

@Html.EditorFor(model => model.Price)
@Html.vValidationMessageFor(model => model.Price)
</div>

<divclass="editor-label">

@Html.LabelFor(model => model.Rating)

</div>

<divclass="editor-field">

@Html.EditorFor(model => model.Rating)
@Html.ValidationMessageFor(model => model.Rating)
</div>

<p>

<inputtype="submit"value="Create"/>

</p>

</fieldset>

}

<div>
@Html.ActionLink("Back to List", "Index")
</div>

Notice how the code uses an Html.EditorFor helper to output the<input> element for each Movie
property. Next to this helper is a call to the Html.ValidationMessageFor helper method. These two helper
methods work with the model object that's passed by the controller to the view (in this case, a Movie object).
They automatically look for validation attributes specified on the model and display error messages as

appropriate.

What's really nice about this approach is that neither the controller nor the Create view template knows
anything about the actual validation rules being enforced or about the specific error messages displayed. The

validation rules and the error strings are specified only in the Movie class.

If you want to change the validation logic later, you can do so in exactly one place by adding validation
attributes to the model (in this example, themovie class). You won't have to worry about different parts of the
application being inconsistent with how the rules are enforced — all validation logic will be defined in one
place and used everywhere. This keeps the code very clean, and makes it easy to maintain and evolve. And it

means that that you'll be fully honoring the DRY principle.

Adding Formatting to the Movie Model

Open the Movie.cs file and examine the Movie class. TheSystem.ComponentModel.DataAnnotations
namespace provides formatting attributes in addition to the built-in set of validation attributes. We've already
applied aDataType enumeration value to the release date and to the price fields. The following code shows the

ReleaseDate and Price properties with the appropriateDisplayFormat attribute.

[DataType(DataType.Date)]
publicDateTimeReleaseDate{get;set;}

[DataType(DataType.Currency)]

publicdecimalPrice{get;set;}

Alternatively, you could explicitly set aDataFormatString value. The following code shows the release date
property with a date format string (namely, "d"). You'd use this to specify that you don't want to time as part of

the release date.

[DisplayFormat(DataFormatString="{0:d}")]
publicDateTimeReleaseDate{get;set;}

The following code formats the Price property as currency.

[DisplayFormat(DataFormatString="{0:c}")]

publicdecimalPrice{get;set;}

The complete Movie class is shown below.

publicclassMovie{
publicint ID {get;set;}

http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.datatype.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.displayformatattribute.aspx
http://msdn.microsoft.com/en-us/library/system.string.format.aspx

[Required]
publicstringTitle{get;set;}

[DataType(DataType.Date)]
publicDateTimeReleaseDate{get;set;}

[Required]
publicstringGenre{get;set;}

[Range(1,100)]
[DataType(DataType.Currency)]
publicdecimalPrice{get;set;}

[StringlLength(5)]

publicstringRating{get;set;}
}

Run the application and browse to the Movies controller. The release date and price are nicely formatted.

http:fflocalhost 12341

RP~RBOX

Index - Movie Lpp 1

Index

Create New

© 2012 - My ASP.NET MVC Application

Title ReleaseDate
When Harry Met Sally 1/11/1989
Ghostbusters 3/13/1984
Ghostbusters 2 2/23/1986
Rio Bravo 4/15/1959

Genre

Price Rating

Romantic Comedy $7.99

Comedy
Comedy

Western

$8.99
59.99
$3.99

R

R
R
R

Edit | Details | Delete
Edit | Details | Delete
Edit | Details | Delete
Edit | Details | Delete

m

In the next part of the series, we'll review the application and make some improvements to the automatically

generated Details and Delete methods.

Examining the Details and Delete Methods

In this part of the tutorial, you'll examine the automatically generated Details and Delete methods.

Examining the Details and Delete Methods
Open the Movie controller and examine the Details method.

publicActionResultDetails(int id =0)
{

Movie movie =db.Movies.Find(id);
if(movie ==null)

{

returnHttpNotFound();

}

returnView(movie);

}

Code First makes it easy to search for data using the Find method. An important security feature built into the
method is that the code verifies that the Find method has found a movie before the code tries to do anything
with it. For example, a hacker could introduce errors into the site by changing the URL created by the links from
http://localhost:xxxx/Movies/Details/1 to something like http://localhost:xxxx/Movies/Details/12345 (or some
other value that doesn't represent an actual movie). If you did not check for a null movie, a null movie would

result in a database error.

Examine the Delete and DeleteConfirmed methods.

// GET: /Movies/Delete/5

publicActionResultDelete(int id =0)
{

Movie movie =db.Movies.Find(id);
if(movie ==null)

{

returnHttpNotFound();

}

returnView(movie);

http://localhost:xxxx/Movies/Details/1
http://localhost:xxxx/Movies/Details/12345

//
// POST: /Movies/Delete/5

[HttpPost,ActionName("Delete")]
publicActionResultDeleteConfirmed(int id =0)
{

Movie movie =db.Movies.Find(id);

if(movie ==null)

{

returnHttpNotFound();

}

db.Movies.Remove(movie);

db.SaveChanges();

returnRedirectToAction("Index");

}

Note that the HTTP Get Delete method doesn't delete the specified movie, it returns a view of the movie
where you can submit (HttpPost) the deletion.. Performing a delete operation in response to a GET request (or
for that matter, performing an edit operation, create operation, or any other operation that changes data)
opens up a security hole. For more information about this, see Stephen Walther's blog entryASP.NET MVC Tip

#46 — Don't use Delete Links because they create Security Holes.

The HttpPost method that deletes the data is named DeleteConfirmed to give the HTTP POST method a

unique signature or name. The two method signatures are shown below:

// GET: /Movies/Delete/5
publicActionResultDelete(int id =0)

//

// POST: /Movies/Delete/5
[HttpPost,ActionName("Delete")]
publicActionResultDeleteConfirmed(int id =0)

http://stephenwalther.com/blog/archive/2009/01/21/asp.net-mvc-tip-46-ndash-donrsquot-use-delete-links-because.aspx
http://stephenwalther.com/blog/archive/2009/01/21/asp.net-mvc-tip-46-ndash-donrsquot-use-delete-links-because.aspx

The common language runtime (CLR) requires overloaded methods to have a unique signature (same method
name but different list of parameters). However, here you need two Delete methods -- one for GET and one for

POST -- that both have the same signature. (They both need to accept a single integer as a parameter.)

To sort this out, you can do a couple of things. One is to give the methods different names. That's what the
scaffolding mechanism did in he preceding example. However, this introduces a small problem: ASP.NET maps
segments of a URL to action methods by name, and if you rename a method, routing normally wouldn't be able
to find that method. The solution is what you see in the example, which is to add the ActionName("Delete")
attribute to theDeleteConfirmed method. This effectively performs mapping for the routing system so that a
URL that includes /Delete/ for a POST request will find the DeleteConfirmed method.

Another common way to avoid a problem with methods that have identical names and signatures is to
artificially change the signature of the POST method to include an unused parameter. For example, some
developers add a parameter typeFormCollectionthat is passed to the POST method, and then simply don't

use the parameter:

publicActionResultDelete(FormCollection fcNotUsed,int id =0)
{

Movie movie =db.Movies.Find(id);

if(movie ==null)

{

returnHttpNotFound();

}

db.Movies.Remove(movie);

db.SaveChanges();

returnRedirectToAction("Index");

}

Wrapping Up

You now have a complete ASP.NET MVC application that stores data in a SQL Server Compact database. You

can create, read, update, delete, and search for movies.

http://msdn.microsoft.com/en-us/library/system.web.mvc.formcollection.aspx

| Searchlndex - Movie &pp

< C | @ localhost1234/Movies/Searchindex o7 R
.|

Register Login

Home About Contact

Searchlndex
Create Mew
Genre: :AII E Title:
Title ReleaseDate Genre Price
Wihen Harry Met Sally 1/11/1989 Romantic Comedy $7.99 Edit | Details | Delete
Ghostbusters /1371984 Comedy 18.99 Edit | Details | Delete
Ghostbusters 2 2/23/1986 Comedy $9.99 Edit | Details | Delete
Rio Bravo A4/15/1959 Western $3.99 Edit | Details | Delete
2 2012 - My ASPMET MYWC Application ‘_-'!' ﬁ

THEE

This basic tutorial got you started making controllers, associating them with views, and passing around hard-
coded data. Then you created and designed a data model. Entity Framework code-first created a database from
the data model on the fly, and the ASP.NET MVC scaffolding system automatically generated the action
methods and views for basic CRUD operations. You then added a search form that let users search the
database. You changed the database to include a new column of data, and then updated two pages to create
and display this new data. You added validation by marking the data model with attributes from the

DataAnnotations namespace. The resulting validation runs on the client and on the server.

If you'd like to deploy your application, it's helpful to first test the application on your local IIS 7 server. You can
use thisWeb Platform Installer link to enable IIS setting for ASP.NET applications. See the following deployment

links:

http://www.microsoft.com/web/gallery/install.aspx?appsxml=&appid=ASPNET

e ASP.NET Deployment Content Map
e Enabling IIS 7.x

e Web Application Projects Deployment

I now encourage you to move on to our intermediate-levelCreating an Entity Framework Data Model for an
ASP.NET MVC Application andMVC Music Store tutorials, to explore theASP.NET articles on MSDN, and to
check out the many videos and resources athttp://asp.net/mvc to learn even more about ASP.NET MVC! The

ASP.NET MVC forums are a great place to ask questions.
Enjoy!

— Rick Anderson blogs.msdn.com/rickAndy twitter @RickAndMSFT

— Scott Hanselmanhttp://www.hanselman.com/blog/ twitter @shanselman

http://msdn.microsoft.com/en-us/library/dd394698.aspx
http://blogs.msdn.com/b/rickandy/archive/2011/03/14/enabling-iis-7-x-on-windows-7-vista-sp1-windows-2008-windows-2008-r2.aspx
http://msdn.microsoft.com/en-us/library/dd394698.aspx
http://www.asp.net/entity-framework/tutorials/creating-an-entity-framework-data-model-for-an-asp-net-mvc-application
http://www.asp.net/entity-framework/tutorials/creating-an-entity-framework-data-model-for-an-asp-net-mvc-application
http://www.asp.net/mvc/tutorials/mvc-music-store-part-1
http://msdn.microsoft.com/en-us/library/gg416514(VS.98).aspx
http://asp.net/mvc
http://forums.asp.net/1146.aspx
http://blogs.msdn.com/rickAndy
https://twitter.com/#!/RickAndMSFT
http://www.hanselman.com/blog/
https://twitter.com/#!/shanselman

	Cover
	Contents
	Getting Started
	What You'll Build
	Skills You'll Learn
	Getting Started
	Creating Your First Application

	Adding a Controller
	Adding a View
	Changing Views and Layout Pages
	Passing Data from the Controller to the View

	Adding a Model
	Adding Model Classes
	Creating a Connection String and Working with SQL Server LocalDB

	Accessing Your Model's Data from a Controller
	Creating a Movie
	Examining the Generated Code
	Strongly Typed Models and the @model Keyword
	Working with SQL Server LocalDB

	Examining the Edit Methods and Edit View
	Processing the POST Request
	Adding a Search Method and Search View
	Displaying the SearchIndex Form
	Adding Search by Genre
	Adding Markup to the SearchIndex View to Support Search by Genre

	Adding a New Field to the Movie Model and Table
	Adding a Rating Property to the Movie Model
	Managing Model and Database Schema Differences
	Automatically Re-Creating the Database on Model Changes

	Adding Validation to the Model
	Keeping Things DRY
	Adding Validation Rules to the Movie Model
	Validation Error UI in ASP.NET MVC
	How Validation Occurs in the Create View and Create Action Method
	Adding Formatting to the Movie Model

	Examining the Details and Delete Methods
	Examining the Details and Delete Methods
	Wrapping Up

