Computer Science > Computer Vision and Pattern Recognition
[Submitted on 5 Dec 2024 (v1), last revised 13 Dec 2024 (this version, v2)]
Title:Targeted Hard Sample Synthesis Based on Estimated Pose and Occlusion Error for Improved Object Pose Estimation
View PDF HTML (experimental)Abstract:6D Object pose estimation is a fundamental component in robotics enabling efficient interaction with the environment. It is particularly challenging in bin-picking applications, where objects may be textureless and in difficult poses, and occlusion between objects of the same type may cause confusion even in well-trained models. We propose a novel method of hard example synthesis that is model-agnostic, using existing simulators and the modeling of pose error in both the camera-to-object viewsphere and occlusion space. Through evaluation of the model performance with respect to the distribution of object poses and occlusions, we discover regions of high error and generate realistic training samples to specifically target these regions. With our training approach, we demonstrate an improvement in correct detection rate of up to 20% across several ROBI-dataset objects using state-of-the-art pose estimation models.
Submission history
From: Alan Li Mr [view email][v1] Thu, 5 Dec 2024 16:00:55 UTC (5,531 KB)
[v2] Fri, 13 Dec 2024 16:59:08 UTC (5,531 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.