Computer Science > Machine Learning
[Submitted on 18 Nov 2024 (v1), last revised 5 Dec 2024 (this version, v2)]
Title:Don't Be So Positive: Negative Step Sizes in Second-Order Methods
View PDF HTML (experimental)Abstract:The value of second-order methods lies in the use of curvature information. Yet, this information is costly to extract and once obtained, valuable negative curvature information is often discarded so that the method is globally convergent. This limits the effectiveness of second-order methods in modern machine learning. In this paper, we show that second-order and second-order-like methods are promising optimizers for neural networks provided that we add one ingredient: negative step sizes. We show that under very general conditions, methods that produce ascent directions are globally convergent when combined with a Wolfe line search that allows both positive and negative step sizes. We experimentally demonstrate that using negative step sizes is often more effective than common Hessian modification methods.
Submission history
From: Betty Shea [view email][v1] Mon, 18 Nov 2024 01:27:44 UTC (579 KB)
[v2] Thu, 5 Dec 2024 17:44:09 UTC (580 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.