Computer Science > Mathematical Software
[Submitted on 15 Nov 2024]
Title:Skew-Symmetric Matrix Decompositions on Shared-Memory Architectures
View PDF HTML (experimental)Abstract:The factorization of skew-symmetric matrices is a critically understudied area of dense linear algebra (DLA), particularly in comparison to that of symmetric matrices. While some algorithms can be adapted from the symmetric case, the cost of algorithms can be reduced by exploiting skew-symmetry. A motivating example is the factorization $X=LTL^T$ of a skew-symmetric matrix $X$, which is used in practical applications as a means of determining the determinant of $X$ as the square of the (cheaply-computed) Pfaffian of the skew-symmetric tridiagonal matrix $T$, for example in fields such as quantum electronic structure and machine learning. Such applications also often require pivoting in order to improve numerical stability. In this work we explore a combination of known literature algorithms and new algorithms recently derived using formal methods. High-performance parallel CPU implementations are created, leveraging the concept of fusion at multiple levels in order to reduce memory traffic overhead, as well as the BLIS framework which provides high-performance GEMM kernels, hierarchical parallelism, and cache blocking. We find that operation fusion and improved use of available bandwidth via parallelization of bandwidth-bound (level-2 BLAS) operations are essential for obtaining high performance, while a concise C++ implementation provides a clear and close connection to the formal derivation process without sacrificing performance.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.