Computer Science > Computers and Society
[Submitted on 13 Nov 2024]
Title:Collaborative Participatory Research with LLM Agents in South Asia: An Empirically-Grounded Methodological Initiative and Agenda from Field Evidence in Sri Lanka
View PDF HTML (experimental)Abstract:The integration of artificial intelligence into development research methodologies presents unprecedented opportunities for addressing persistent challenges in participatory research, particularly in linguistically diverse regions like South Asia. Drawing from an empirical implementation in Sri Lanka's Sinhala-speaking communities, this paper presents an empirically grounded methodological framework designed to transform participatory development research, situated in the challenging multilingual context of Sri Lanka's flood-prone Nilwala River Basin. Moving beyond conventional translation and data collection tools, this framework deploys a multi-agent system architecture that redefines how data collection, analysis, and community engagement are conducted in linguistically and culturally diverse research settings. This structured agent-based approach enables participatory research that is both scalable and responsive, ensuring that community perspectives remain integral to research outcomes. Field experiences reveal the immense potential of LLM-based systems in addressing long-standing issues in development research across resource-limited regions, offering both quantitative efficiencies and qualitative improvements in inclusivity. At a broader methodological level, this research agenda advocates for AI-driven participatory research tools that maintain ethical considerations, cultural respect, and operational efficiency, highlighting strategic pathways for deploying AI systems that reinforce community agency and equitable knowledge generation, potentially informing broader research agendas across the Global South.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.