Mathematics > Numerical Analysis
[Submitted on 3 Oct 2024 (v1), last revised 29 Nov 2024 (this version, v2)]
Title:Polynomial approximation of noisy functions
View PDF HTML (experimental)Abstract:Approximating a univariate function on the interval $[-1,1]$ with a polynomial is among the most classical problems in numerical analysis. When the function evaluations come with noise, a least-squares fit is known to reduce the effect of noise as more samples are taken. The generic algorithm for the least-squares problem requires $O(Nn^2)$ operations, where $N+1$ is the number of sample points and $n$ is the degree of the polynomial approximant. This algorithm is unstable when $n$ is large, for example $n\gg \sqrt{N}$ for equispaced sample points. In this study, we blend numerical analysis and statistics to introduce a stable and fast $O(N\log N)$ algorithm called NoisyChebtrunc based on the Chebyshev interpolation. It has the same error reduction effect as least-squares and the convergence is spectral until the error reaches $O(\sigma \sqrt{{n}/{N}})$, where $\sigma$ is the noise level, after which the error continues to decrease at the Monte-Carlo $O(1/\sqrt{N})$ rate. To determine the polynomial degree, NoisyChebtrunc employs a statistical criterion, namely Mallows' $C_p$. We analyze NoisyChebtrunc in terms of the variance and concentration in the infinity norm to the underlying noiseless function. These results show that with high probability the infinity-norm error is bounded by a small constant times $\sigma \sqrt{{n}/{N}}$, when the noise {is} independent and follows a subgaussian or subexponential distribution. We illustrate the performance of NoisyChebtrunc with numerical experiments.
Submission history
From: Takeru Matsuda [view email][v1] Thu, 3 Oct 2024 08:53:31 UTC (1,684 KB)
[v2] Fri, 29 Nov 2024 09:47:07 UTC (1,684 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.