Computer Science > Software Engineering
[Submitted on 30 Sep 2024]
Title:Bug-locating Method based on Statistical Testing for Quantum Programs
View PDF HTML (experimental)Abstract:When a bug is detected by testing a quantum program on a quantum computer, we want to determine its location to fix it. To locate the bug, the quantum program is divided into several segments, and each segment is tested. However, to prepare a quantum state that is input to a segment, it is necessary to execute all the segments ahead of that segment in a quantum computer. This means that the cost of testing each segment depends on its location. We can also locate a buggy segment only if it is confirmed that there are no bugs in all segments ahead of that buggy segment. Since a quantum program is tested statistically on the basis of measurement results, there is a tradeoff between testing accuracy and cost. These characteristics are unique to quantum programs and complicate locating bugs. We propose an efficient bug-locating method consisting of four approaches, cost-based binary search, early determination, finalization, and looking back, which take these characteristics into account. We present experimental results that indicate that the proposed method can reduce the bug-locating cost, represented as the number of executed quantum gates, compared to naive methods that do not use the four approaches. The limitation and usefulness of the proposed method are also discussed from the experimental results.
Current browse context:
cs.SE
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.