Computer Science > Human-Computer Interaction
[Submitted on 24 Sep 2024]
Title:Bridging the Transparency Gap: Exploring Multi-Stakeholder Preferences for Targeted Advertisement Explanations
View PDF HTML (experimental)Abstract:Limited transparency in targeted advertising on online content delivery platforms can breed mistrust for both viewers (of the content and ads) and advertisers. This user study (n=864) explores how explanations for targeted ads can bridge this gap, fostering transparency for two of the key stakeholders. We explore participants' preferences for explanations and allow them to tailor the content and format. Acting as viewers or advertisers, participants chose which details about viewing habits and user data to include in explanations. Participants expressed concerns not only about the inclusion of personal data in explanations but also about the use of it in ad placing. Surprisingly, we found no significant differences in the features selected by the two groups to be included in the explanations. Furthermore, both groups showed overall high satisfaction, while "advertisers" perceived the explanations as significantly more transparent than "viewers". Additionally, we observed significant variations in the use of personal data and the features presented in explanations between the two phases of the experiment. This study also provided insights into participants' preferences for how explanations are presented and their assumptions regarding advertising practices and data usage. This research broadens our understanding of transparent advertising practices by highlighting the unique dynamics between viewers and advertisers on online platforms, and suggesting that viewers' priorities should be considered in the process of ad placement and creation of explanations.
Submission history
From: Dina Zilbershtein [view email][v1] Tue, 24 Sep 2024 11:58:32 UTC (3,708 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.