Computer Science > Robotics
[Submitted on 22 Sep 2024]
Title:AutoPeel: Adhesion-aware Safe Peeling Trajectory Optimization for Robotic Wound Care
View PDF HTML (experimental)Abstract:Chronic wounds, including diabetic ulcers, pressure ulcers, and ulcers secondary to venous hypertension, affects more than 6.5 million patients and a yearly cost of more than $25 billion in the United States alone. Chronic wound treatment is currently a manual process, and we envision a future where robotics and automation will aid in this treatment to reduce cost and improve patient care. In this work, we present the development of the first robotic system for wound dressing removal which is reported to be the worst aspect of living with chronic wounds. Our method leverages differentiable physics-based simulation to perform gradient-based Model Predictive Control (MPC) for optimized trajectory planning. By integrating fracture mechanics of adhesion, we are able to model the peeling effect inherent to dressing adhesion. The system is further guided by carefully designed objective functions that promote both efficient and safe control, reducing the risk of tissue damage. We validated the efficacy of our approach through a series of experiments conducted on both synthetic skin phantoms and real human subjects. Our results demonstrate the system's ability to achieve precise and safe dressing removal trajectories, offering a promising solution for automating this essential healthcare procedure.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.