Computer Science > Machine Learning
[Submitted on 20 Sep 2024]
Title:DP$^2$-FedSAM: Enhancing Differentially Private Federated Learning Through Personalized Sharpness-Aware Minimization
View PDF HTML (experimental)Abstract:Federated learning (FL) is a distributed machine learning approach that allows multiple clients to collaboratively train a model without sharing their raw data. To prevent sensitive information from being inferred through the model updates shared in FL, differentially private federated learning (DPFL) has been proposed. DPFL ensures formal and rigorous privacy protection in FL by clipping and adding random noise to the shared model updates. However, the existing DPFL methods often result in severe model utility degradation, especially in settings with data heterogeneity. To enhance model utility, we propose a novel DPFL method named DP$^2$-FedSAM: Differentially Private and Personalized Federated Learning with Sharpness-Aware Minimization. DP$^2$-FedSAM leverages personalized partial model-sharing and sharpness-aware minimization optimizer to mitigate the adverse impact of noise addition and clipping, thereby significantly improving model utility without sacrificing privacy. From a theoretical perspective, we provide a rigorous theoretical analysis of the privacy and convergence guarantees of our proposed method. To evaluate the effectiveness of DP$^2$-FedSAM, we conduct extensive evaluations based on common benchmark datasets. Our results verify that our method improves the privacy-utility trade-off compared to the existing DPFL methods, particularly in heterogeneous data settings.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.