Computer Science > Machine Learning
[Submitted on 19 Sep 2024]
Title:FoME: A Foundation Model for EEG using Adaptive Temporal-Lateral Attention Scaling
View PDF HTML (experimental)Abstract:Electroencephalography (EEG) is a vital tool to measure and record brain activity in neuroscience and clinical applications, yet its potential is constrained by signal heterogeneity, low signal-to-noise ratios, and limited labeled datasets. In this paper, we propose FoME (Foundation Model for EEG), a novel approach using adaptive temporal-lateral attention scaling to address above-mentioned challenges. FoME is pre-trained on a diverse 1.7TB dataset of scalp and intracranial EEG recordings, comprising 745M parameters trained for 1,096k steps. Our model introduces two key innovations: a time-frequency fusion embedding technique and an adaptive time-lateral attention scaling (ATLAS) mechanism. These components synergistically capture complex temporal and spectral EEG dynamics, enabling FoME to adapt to varying patterns across diverse data streams and facilitate robust multi-channel modeling. Evaluations across four downstream tasks demonstrate FoME's superior performance in classification and forecasting applications, consistently achieving state-of-the-art results. To conclude, FoME establishes a new paradigm for EEG analysis, offering a versatile foundation that advances brain-computer interfaces, clinical diagnostics, and cognitive research across neuroscience and related fields. Our code will be available at this https URL.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.