Computer Science > Cryptography and Security
[Submitted on 29 Aug 2024 (v1), last revised 6 Dec 2024 (this version, v2)]
Title:Secure Integration of 5G in Industrial Networks: State of the Art, Challenges and Opportunities
View PDFAbstract:The industrial landscape is undergoing a significant transformation, moving away from traditional wired fieldbus networks to cutting-edge 5G mobile networks. This transition, extending from local applications to company-wide use and spanning multiple factories, is driven by the promise of low-latency communication and seamless connectivity for various devices in industrial settings. However, besides these tremendous benefits, the integration of 5G as the communication infrastructure in industrial networks introduces a new set of risks and threats to the security of industrial systems. The inherent complexity of 5G systems poses unique challenges for ensuring a secure integration, surpassing those encountered with any technology previously utilized in industrial networks. Most importantly, the distinct characteristics of industrial networks, such as real-time operation, required safety guarantees, and high availability requirements, further complicate this task. As the industrial transition from wired to wireless networks is a relatively new concept, a lack of guidance and recommendations on securely integrating 5G renders many industrial systems vulnerable and exposed to threats associated with 5G. To address this situation, in this paper, we summarize the state-of-the-art and derive a set of recommendations for the secure integration of 5G into industrial networks based on a thorough analysis of the research landscape. Furthermore, we identify opportunities to utilize 5G to enhance security and indicate remaining challenges, identifying future academic directions.
Submission history
From: Martin Henze [view email][v1] Thu, 29 Aug 2024 18:00:17 UTC (394 KB)
[v2] Fri, 6 Dec 2024 19:13:59 UTC (1,612 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.