Computer Science > Machine Learning
[Submitted on 24 Aug 2024 (v1), last revised 3 Sep 2024 (this version, v2)]
Title:MPruner: Optimizing Neural Network Size with CKA-Based Mutual Information Pruning
View PDF HTML (experimental)Abstract:Determining the optimal size of a neural network is critical, as it directly impacts runtime performance and memory usage. Pruning is a well-established model compression technique that reduces the size of neural networks while mathematically guaranteeing accuracy preservation. However, many recent pruning methods overlook the global contributions of individual model components, making it difficult to ensure that a pruned model meets the desired dataset and performance requirements. To address these challenges, we developed a new pruning algorithm, MPruner, that leverages mutual information through vector similarity. MPruner utilizes layer clustering with the Centered Kernel Alignment (CKA) similarity metric, allowing us to incorporate global information from the neural network for more precise and efficient layer-wise pruning. We evaluated MPruner across various architectures and configurations, demonstrating its versatility and providing practical guidelines. MPruner achieved up to a 50% reduction in parameters and memory usage for CNN and transformer-based models, with minimal to no loss in accuracy.
Submission history
From: Jieung Kim [view email][v1] Sat, 24 Aug 2024 05:54:47 UTC (1,940 KB)
[v2] Tue, 3 Sep 2024 00:48:37 UTC (1,940 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.