Computer Science > Cryptography and Security
[Submitted on 21 Aug 2024]
Title:R-STELLAR: A Resilient Synthesizable Signature Attenuation SCA Protection on AES-256 with built-in Attack-on-Countermeasure Detection
View PDF HTML (experimental)Abstract:Side channel attacks (SCAs) remain a significant threat to the security of cryptographic systems in modern embedded devices. Even mathematically secure cryptographic algorithms, when implemented in hardware, inadvertently leak information through physical side channel signatures such as power consumption, electromagnetic (EM) radiation, light emissions, and acoustic emanations. Exploiting these side channels significantly reduces the search space of the attacker. In recent years, physical countermeasures have significantly increased the minimum traces to disclosure (MTD) to 1 billion. Among them, signature attenuation is the first method to achieve this mark. Signature attenuation often relies on analog techniques, and digital signature attenuation reduces MTD to 20 million, requiring additional methods for high resilience. We focus on improving the digital signature attenuation by an order of magnitude (MTD 200M). Additionally, we explore possible attacks against signature attenuation countermeasure. We introduce a Voltage drop Linear region Biasing (VLB) attack technique that reduces the MTD to over 2000 times less than the previous threshold. This is the first known attack against a physical side-channel attack (SCA) countermeasure. We have implemented an attack detector with a response time of 0.8 milliseconds to detect such attacks, limiting SCA leakage window to sub-ms, which is insufficient for a successful attack.
Current browse context:
cs.CR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.