Statistics > Machine Learning
[Submitted on 19 Aug 2024]
Title:Efficient Reinforcement Learning in Probabilistic Reward Machines
View PDF HTML (experimental)Abstract:In this paper, we study reinforcement learning in Markov Decision Processes with Probabilistic Reward Machines (PRMs), a form of non-Markovian reward commonly found in robotics tasks. We design an algorithm for PRMs that achieves a regret bound of $\widetilde{O}(\sqrt{HOAT} + H^2O^2A^{3/2} + H\sqrt{T})$, where $H$ is the time horizon, $O$ is the number of observations, $A$ is the number of actions, and $T$ is the number of time-steps. This result improves over the best-known bound, $\widetilde{O}(H\sqrt{OAT})$ of \citet{pmlr-v206-bourel23a} for MDPs with Deterministic Reward Machines (DRMs), a special case of PRMs. When $T \geq H^3O^3A^2$ and $OA \geq H$, our regret bound leads to a regret of $\widetilde{O}(\sqrt{HOAT})$, which matches the established lower bound of $\Omega(\sqrt{HOAT})$ for MDPs with DRMs up to a logarithmic factor. To the best of our knowledge, this is the first efficient algorithm for PRMs. Additionally, we present a new simulation lemma for non-Markovian rewards, which enables reward-free exploration for any non-Markovian reward given access to an approximate planner. Complementing our theoretical findings, we show through extensive experiment evaluations that our algorithm indeed outperforms prior methods in various PRM environments.
Current browse context:
stat.ML
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.