Computer Science > Data Structures and Algorithms
[Submitted on 29 Jul 2024]
Title:Engineering an Efficient Approximate DNF-Counter
View PDF HTML (experimental)Abstract:Model counting is a fundamental problem in many practical applications, including query evaluation in probabilistic databases and failure-probability estimation of networks. In this work, we focus on a variant of this problem where the underlying formula is expressed in the Disjunctive Normal Form (DNF), also known as #DNF. This problem has been shown to be #P-complete, making it often intractable to solve exactly. Much research has therefore focused on obtaining approximate solutions, particularly in the form of $(\varepsilon, \delta)$ approximations.
The primary contribution of this paper is a new approach, called pepin, an approximate #DNF counter that significantly outperforms prior state-of-the-art approaches. Our work is based on the recent breakthrough in the context of the union of sets in the streaming model. We demonstrate the effectiveness of our approach through extensive experiments and show that it provides an affirmative answer to the challenge of efficiently computing #DNF.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.