Computer Science > Artificial Intelligence
[Submitted on 26 Jul 2024]
Title:Online Test Synthesis From Requirements: Enhancing Reinforcement Learning with Game Theory
View PDFAbstract:We consider the automatic online synthesis of black-box test cases from functional requirements specified as automata for reactive implementations. The goal of the tester is to reach some given state, so as to satisfy a coverage criterion, while monitoring the violation of the requirements. We develop an approach based on Monte Carlo Tree Search, which is a classical technique in reinforcement learning for efficiently selecting promising inputs. Seeing the automata requirements as a game between the implementation and the tester, we develop a heuristic by biasing the search towards inputs that are promising in this game. We experimentally show that our heuristic accelerates the convergence of the Monte Carlo Tree Search algorithm, thus improving the performance of testing.
Submission history
From: Ocan Sankur [view email] [via CCSD proxy][v1] Fri, 26 Jul 2024 07:59:59 UTC (230 KB)
Current browse context:
cs.AI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.