Computer Science > Artificial Intelligence
[Submitted on 12 Jul 2024]
Title:Constrained Intrinsic Motivation for Reinforcement Learning
View PDF HTML (experimental)Abstract:This paper investigates two fundamental problems that arise when utilizing Intrinsic Motivation (IM) for reinforcement learning in Reward-Free Pre-Training (RFPT) tasks and Exploration with Intrinsic Motivation (EIM) tasks: 1) how to design an effective intrinsic objective in RFPT tasks, and 2) how to reduce the bias introduced by the intrinsic objective in EIM tasks. Existing IM methods suffer from static skills, limited state coverage, sample inefficiency in RFPT tasks, and suboptimality in EIM tasks. To tackle these problems, we propose \emph{Constrained Intrinsic Motivation (CIM)} for RFPT and EIM tasks, respectively: 1) CIM for RFPT maximizes the lower bound of the conditional state entropy subject to an alignment constraint on the state encoder network for efficient dynamic and diverse skill discovery and state coverage maximization; 2) CIM for EIM leverages constrained policy optimization to adaptively adjust the coefficient of the intrinsic objective to mitigate the distraction from the intrinsic objective. In various MuJoCo robotics environments, we empirically show that CIM for RFPT greatly surpasses fifteen IM methods for unsupervised skill discovery in terms of skill diversity, state coverage, and fine-tuning performance. Additionally, we showcase the effectiveness of CIM for EIM in redeeming intrinsic rewards when task rewards are exposed from the beginning. Our code is available at this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.