Computer Science > Computers and Society
[Submitted on 22 Apr 2024]
Title:U Can't Gen This? A Survey of Intellectual Property Protection Methods for Data in Generative AI
View PDFAbstract:Large Generative AI (GAI) models have the unparalleled ability to generate text, images, audio, and other forms of media that are increasingly indistinguishable from human-generated content. As these models often train on publicly available data, including copyrighted materials, art and other creative works, they inadvertently risk violating copyright and misappropriation of intellectual property (IP). Due to the rapid development of generative AI technology and pressing ethical considerations from stakeholders, protective mechanisms and techniques are emerging at a high pace but lack systematisation.
In this paper, we study the concerns regarding the intellectual property rights of training data and specifically focus on the properties of generative models that enable misuse leading to potential IP violations. Then we propose a taxonomy that leads to a systematic review of technical solutions for safeguarding the data from intellectual property violations in GAI.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.