Mathematics > Optimization and Control
[Submitted on 6 Jun 2024 (v1), last revised 12 Jul 2024 (this version, v2)]
Title:Traffic signal optimization in large-scale urban road networks: an adaptive-predictive controller using Ising models
View PDF HTML (experimental)Abstract:Realizing smooth traffic flow is important for achieving carbon neutrality. Adaptive traffic signal control, which considers traffic conditions, has thus attracted attention. However, it is difficult to ensure optimal vehicle flow throughout a large city using existing control methods because of their heavy computational load. Here, we propose a control method called AMPIC (Adaptive Model Predictive Ising Controller) that guarantees both scalability and optimality. The proposed method employs model predictive control to solve an optimal control problem at each control interval with explicit consideration of a predictive model of vehicle flow. This optimal control problem is transformed into a combinatorial optimization problem with binary variables that is equivalent to the so-called Ising problem. This transformation allows us to use an Ising solver, which has been widely studied and is expected to have fast and efficient optimization performance. We performed numerical experiments using a microscopic traffic simulator for a realistic city road network. The results show that AMPIC enables faster vehicle cruising speed with less waiting time than that achieved by classical control methods, resulting in lower CO2 emissions. The model predictive approach with a long prediction horizon thus effectively improves control performance. Systematic parametric studies on model cities indicate that the proposed method realizes smoother traffic flows for large city road networks. Among Ising solvers, D-Wave's quantum annealing is shown to find near-optimal solutions at a reasonable computational cost.
Submission history
From: Daisuke Inoue [view email][v1] Thu, 6 Jun 2024 02:20:34 UTC (3,491 KB)
[v2] Fri, 12 Jul 2024 08:55:44 UTC (5,240 KB)
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.