Computer Science > Computer Vision and Pattern Recognition
[Submitted on 5 Jun 2024]
Title:Image Copy-Move Forgery Detection and Localization Scheme: How to Avoid Missed Detection and False Alarm
View PDF HTML (experimental)Abstract:Image copy-move is an operation that replaces one part of the image with another part of the same image, which can be used for illegal purposes due to the potential semantic changes. Recent studies have shown that keypoint-based algorithms achieved excellent and robust localization performance even when small or smooth tampered areas were involved. However, when the input image is low-resolution, most existing keypoint-based algorithms are difficult to generate sufficient keypoints, resulting in more missed detections. In addition, existing algorithms are usually unable to distinguish between Similar but Genuine Objects (SGO) images and tampered images, resulting in more false alarms. This is mainly due to the lack of further verification of local homography matrix in forgery localization stage. To tackle these problems, this paper firstly proposes an excessive keypoint extraction strategy to overcome missed detection. Subsequently, a group matching algorithm is used to speed up the matching of excessive keypoints. Finally, a new iterative forgery localization algorithm is introduced to quickly form pixel-level localization results while ensuring a lower false alarm. Extensive experimental results show that our scheme has superior performance than state-of-the-art algorithms in overcoming missed detection and false alarm. Our code is available at this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.