Computer Science > Machine Learning
[Submitted on 21 May 2024 (v1), last revised 19 Sep 2024 (this version, v3)]
Title:Trusting Fair Data: Leveraging Quality in Fairness-Driven Data Removal Techniques
View PDF HTML (experimental)Abstract:In this paper, we deal with bias mitigation techniques that remove specific data points from the training set to aim for a fair representation of the population in that set. Machine learning models are trained on these pre-processed datasets, and their predictions are expected to be fair. However, such approaches may exclude relevant data, making the attained subsets less trustworthy for further usage. To enhance the trustworthiness of prior methods, we propose additional requirements and objectives that the subsets must fulfill in addition to fairness: (1) group coverage, and (2) minimal data loss. While removing entire groups may improve the measured fairness, this practice is very problematic as failing to represent every group cannot be considered fair. In our second concern, we advocate for the retention of data while minimizing discrimination. By introducing a multi-objective optimization problem that considers fairness and data loss, we propose a methodology to find Pareto-optimal solutions that balance these objectives. By identifying such solutions, users can make informed decisions about the trade-off between fairness and data quality and select the most suitable subset for their application. Our method is distributed as a Python package via PyPI under the name FairDo (this https URL).
Submission history
From: Manh Khoi Duong [view email][v1] Tue, 21 May 2024 16:51:28 UTC (88 KB)
[v2] Tue, 11 Jun 2024 14:22:14 UTC (88 KB)
[v3] Thu, 19 Sep 2024 11:31:09 UTC (93 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.