Computer Science > Machine Learning
[Submitted on 16 May 2024]
Title:Data Selection for Transfer Unlearning
View PDF HTML (experimental)Abstract:As deep learning models are becoming larger and data-hungrier, there are growing ethical, legal and technical concerns over use of data: in practice, agreements on data use may change over time, rendering previously-used training data impermissible for training purposes. These issues have driven increased attention to machine unlearning: removing "the influence of" a subset of training data from a trained model. In this work, we advocate for a relaxed definition of unlearning that does not address privacy applications but targets a scenario where a data owner withdraws permission of use of their data for training purposes. In this context, we consider the important problem of \emph{transfer unlearning} where a pretrained model is transferred to a target dataset that contains some "non-static" data that may need to be unlearned in the future. We propose a new method that uses a mechanism for selecting relevant examples from an auxiliary "static" dataset, and finetunes on the selected data instead of "non-static" target data; addressing all unlearning requests ahead of time. We also adapt a recent relaxed definition of unlearning to our problem setting and demonstrate that our approach is an exact transfer unlearner according to it, while being highly efficient (amortized). We find that our method outperforms the gold standard "exact unlearning" (finetuning on only the "static" portion of the target dataset) on several datasets, especially for small "static" sets, sometimes approaching an upper bound for test accuracy. We also analyze factors influencing the accuracy boost obtained by data selection.
Submission history
From: Nazanin Mohammadi Sepahvand [view email][v1] Thu, 16 May 2024 20:09:41 UTC (8,717 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.