Electrical Engineering and Systems Science > Signal Processing
[Submitted on 26 Apr 2024 (v1), last revised 6 May 2024 (this version, v2)]
Title:Generalised envelope spectrum-based signal-to-noise objectives: Formulation, optimisation and application for gear fault detection under time-varying speed conditions
View PDF HTML (experimental)Abstract:In vibration-based condition monitoring, optimal filter design improves fault detection by enhancing weak fault signatures within vibration signals. This process involves optimising a derived objective function from a defined objective. The objectives are often based on proxy health indicators to determine the filter's parameters. However, these indicators can be compromised by irrelevant extraneous signal components and fluctuating operational conditions, affecting the filter's efficacy. Fault detection primarily uses the fault component's prominence in the squared envelope spectrum, quantified by a squared envelope spectrum-based signal-to-noise ratio. New optimal filter objective functions are derived from the proposed generalised envelope spectrum-based signal-to-noise objective for machines operating under variable speed conditions. Instead of optimising proxy health indicators, the optimal filter coefficients of the formulation directly maximise the squared envelope spectrum-based signal-to-noise ratio over targeted frequency bands using standard gradient-based optimisers. Four derived objective functions from the proposed objective effectively outperform five prominent methods in tests on three experimental datasets.
Submission history
From: Daniel Wilke [view email][v1] Fri, 26 Apr 2024 21:35:05 UTC (16,653 KB)
[v2] Mon, 6 May 2024 08:15:43 UTC (16,653 KB)
Current browse context:
eess.SP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.