Electrical Engineering and Systems Science > Systems and Control
[Submitted on 18 Apr 2024]
Title:Stability Certificates for Receding Horizon Games
View PDF HTML (experimental)Abstract:Game-theoretic MPC (or Receding Horizon Games) is an emerging control methodology for multi-agent systems that generates control actions by solving a dynamic game with coupling constraints in a receding-horizon fashion. This control paradigm has recently received an increasing attention in various application fields, including robotics, autonomous driving, traffic networks, and energy grids, due to its ability to model the competitive nature of self-interested agents with shared resources while incorporating future predictions, dynamic models, and constraints into the decision-making process. In this work, we present the first formal stability analysis based on dissipativity and monotone operator theory that is valid also for non-potential games. Specifically, we derive LMI-based certificates that ensure asymptotic stability and are numerically verifiable. Moreover, we show that, if the agents have decoupled dynamics, the numerical verification can be performed in a scalable manner. Finally, we present tuning guidelines for the agents' cost function weights to fulfill the certificates and, thus, ensure stability.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.