Computer Science > Machine Learning
[Submitted on 4 Apr 2024]
Title:Graph Neural Networks for Electric and Hydraulic Data Fusion to Enhance Short-term Forecasting of Pumped-storage Hydroelectricity
View PDF HTML (experimental)Abstract:Pumped-storage hydropower plants (PSH) actively participate in grid power-frequency control and therefore often operate under dynamic conditions, which results in rapidly varying system states. Predicting these dynamically changing states is essential for comprehending the underlying sensor and machine conditions. This understanding aids in detecting anomalies and faults, ensuring the reliable operation of the connected power grid, and in identifying faulty and miscalibrated sensors. PSH are complex, highly interconnected systems encompassing electrical and hydraulic subsystems, each characterized by their respective underlying networks that can individually be represented as graphs. To take advantage of this relational inductive bias, graph neural networks (GNNs) have been separately applied to state forecasting tasks in the individual subsystems, but without considering their interdependencies. In PSH, however, these subsystems depend on the same control input, making their operations highly interdependent and interconnected. Consequently, hydraulic and electrical sensor data should be fused across PSH subsystems to improve state forecasting accuracy. This approach has not been explored in GNN literature yet because many available PSH graphs are limited to their respective subsystem boundaries, which makes the method unsuitable to be applied directly. In this work, we introduce the application of spectral-temporal graph neural networks, which leverage self-attention mechanisms to concurrently capture and learn meaningful subsystem interdependencies and the dynamic patterns observed in electric and hydraulic sensors. Our method effectively fuses data from the PSH's subsystems by operating on a unified, system-wide graph, learned directly from the data, This approach leads to demonstrably improved state forecasting performance and enhanced generalizability.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.