Electrical Engineering and Systems Science > Systems and Control
[Submitted on 27 Mar 2024 (v1), last revised 10 Sep 2024 (this version, v2)]
Title:Adaptive Economic Model Predictive Control for linear systems with performance guarantees
View PDF HTML (experimental)Abstract:We present a model predictive control (MPC) formulation to directly optimize economic criteria for linear constrained systems subject to disturbances and uncertain model parameters. The proposed formulation combines a certainty equivalent economic MPC with a simple least-squares parameter adaptation. For the resulting adaptive economic MPC scheme, we derive strong asymptotic and transient performance guarantees. We provide a numerical example involving building temperature control and demonstrate performance benefits of online parameter adaptation.
Submission history
From: Maximilian Degner [view email][v1] Wed, 27 Mar 2024 09:37:12 UTC (578 KB)
[v2] Tue, 10 Sep 2024 11:02:04 UTC (500 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.