Electrical Engineering and Systems Science > Systems and Control
[Submitted on 7 Mar 2024]
Title:A Crosstalk-Aware Timing Prediction Method in Routing
View PDF HTML (experimental)Abstract:With shrinking interconnect spacing in advanced technology nodes, existing timing predictions become less precise due to the challenging quantification of crosstalk-induced delay. During the routing, the crosstalk effect is typically modeled by predicting coupling capacitance with congestion information. However, the timing estimation tends to be overly pessimistic, as the crosstalk-induced delay depends not only on the coupling capacitance but also on the signal arrival time. This work presents a crosstalk-aware timing estimation method using a two-step machine learning approach. Interconnects that are physically adjacent and overlap in signal timing windows are filtered first. Crosstalk delay is predicted by integrating physical topology and timing features without relying on post-routing results and the parasitic extraction. Experimental results show a match rate of over 99% for identifying crosstalk nets compared to the commercial tool on the OpenCores benchmarks, with prediction results being more accurate than those of other state-of-the-art methods.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.