Electrical Engineering and Systems Science > Systems and Control
[Submitted on 24 Feb 2024 (v1), last revised 8 Apr 2024 (this version, v2)]
Title:Analysis of Off-Policy Multi-Step TD-Learning with Linear Function Approximation
View PDF HTML (experimental)Abstract:This paper analyzes multi-step TD-learning algorithms within the `deadly triad' scenario, characterized by linear function approximation, off-policy learning, and bootstrapping. In particular, we prove that n-step TD-learning algorithms converge to a solution as the sampling horizon n increases sufficiently. The paper is divided into two parts. In the first part, we comprehensively examine the fundamental properties of their model-based deterministic counterparts, including projected value iteration, gradient descent algorithms, and the control theoretic approach, which can be viewed as prototype deterministic algorithms whose analysis plays a pivotal role in understanding and developing their model-free reinforcement learning counterparts. In particular, we prove that these algorithms converge to meaningful solutions when n is sufficiently large. Based on these findings, two n-step TD-learning algorithms are proposed and analyzed, which can be seen as the model-free reinforcement learning counterparts of the gradient and control theoretic algorithms.
Submission history
From: Donghwan Lee [view email][v1] Sat, 24 Feb 2024 10:42:50 UTC (69 KB)
[v2] Mon, 8 Apr 2024 17:45:28 UTC (70 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.