Computer Science > Computation and Language
[Submitted on 22 Feb 2024]
Title:Do LLMs Implicitly Determine the Suitable Text Difficulty for Users?
View PDF HTML (experimental)Abstract:Education that suits the individual learning level is necessary to improve students' understanding. The first step in achieving this purpose by using large language models (LLMs) is to adjust the textual difficulty of the response to students. This work analyzes how LLMs can implicitly adjust text difficulty between user input and its generated text. To conduct the experiments, we created a new dataset from Stack-Overflow to explore the performance of question-answering-based conversation. Experimental results on the Stack-Overflow dataset and the TSCC dataset, including multi-turn conversation show that LLMs can implicitly handle text difficulty between user input and its generated response. We also observed that some LLMs can surpass humans in handling text difficulty and the importance of instruction-tuning.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.