Quantitative Biology > Quantitative Methods
[Submitted on 12 Feb 2024]
Title:Towards a Foundation Model for Brain Age Prediction using coVariance Neural Networks
View PDFAbstract:Brain age is the estimate of biological age derived from neuroimaging datasets using machine learning algorithms. Increasing brain age with respect to chronological age can reflect increased vulnerability to neurodegeneration and cognitive decline. In this paper, we study NeuroVNN, based on coVariance neural networks, as a paradigm for foundation model for the brain age prediction application. NeuroVNN is pre-trained as a regression model on healthy population to predict chronological age using cortical thickness features and fine-tuned to estimate brain age in different neurological contexts. Importantly, NeuroVNN adds anatomical interpretability to brain age and has a `scale-free' characteristic that allows its transference to datasets curated according to any arbitrary brain atlas. Our results demonstrate that NeuroVNN can extract biologically plausible brain age estimates in different populations, as well as transfer successfully to datasets of dimensionalities distinct from that for the dataset used to train NeuroVNN.
Current browse context:
q-bio.QM
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.