Computer Science > Computer Vision and Pattern Recognition
[Submitted on 2 Feb 2024]
Title:Scaled 360 layouts: Revisiting non-central panoramas
View PDF HTML (experimental)Abstract:From a non-central panorama, 3D lines can be recovered by geometric reasoning. However, their sensitivity to noise and the complex geometric modeling required has led these panoramas being very little investigated. In this work we present a novel approach for 3D layout recovery of indoor environments using single non-central panoramas. We obtain the boundaries of the structural lines of the room from a non-central panorama using deep learning and exploit the properties of non-central projection systems in a new geometrical processing to recover the scaled layout. We solve the problem for Manhattan environments, handling occlusions, and also for Atlanta environments in an unified method. The experiments performed improve the state-of-the-art methods for 3D layout recovery from a single panorama. Our approach is the first work using deep learning with non-central panoramas and recovering the scale of single panorama layouts.
Submission history
From: Bruno Berenguel-Baeta [view email][v1] Fri, 2 Feb 2024 14:55:36 UTC (5,564 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.