Computer Science > Human-Computer Interaction
[Submitted on 25 Jan 2024 (v1), last revised 14 Sep 2024 (this version, v5)]
Title:Decision Theoretic Foundations for Experiments Evaluating Human Decisions
View PDF HTML (experimental)Abstract:How well people use information displays to make decisions is of primary interest in human-centered AI, model explainability, data visualization, and related areas. However, what constitutes a decision problem, and what is required for a study to establish that human decisions could be improved remain open to speculation. We propose a widely applicable definition of a decision problem synthesized from statistical decision theory and information economics as a standard for establishing when human decisions can be improved in HCI. We argue that to attribute loss in human performance to forms of bias, an experiment must provide participants with the information that a rational agent would need to identify the utility-maximizing decision. As a demonstration, we evaluate the extent to which recent evaluations of decision-making from the literature on AI-assisted decisions achieve these criteria. We find that only 10 (26\%) of 39 studies that claim to identify biased behavior present participants with sufficient information to characterize their behavior as deviating from good decision-making in at least one treatment condition. We motivate the value of studying well-defined decision problems by describing a characterization of performance losses they allow us to conceive. In contrast, the ambiguities of a poorly communicated decision problem preclude normative interpretation. We conclude with recommendations for practice.
Submission history
From: Jessica Hullman [view email][v1] Thu, 25 Jan 2024 16:21:37 UTC (637 KB)
[v2] Thu, 15 Feb 2024 16:51:16 UTC (644 KB)
[v3] Thu, 5 Sep 2024 16:53:45 UTC (641 KB)
[v4] Tue, 10 Sep 2024 18:04:23 UTC (2,061 KB)
[v5] Sat, 14 Sep 2024 17:21:51 UTC (3,060 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.