Computer Science > Cryptography and Security
[Submitted on 22 Jan 2024 (v1), last revised 27 Sep 2024 (this version, v2)]
Title:zkLogin: Privacy-Preserving Blockchain Authentication with Existing Credentials
View PDF HTML (experimental)Abstract:For many users, a private key based wallet serves as the primary entry point to blockchains. Commonly recommended wallet authentication methods, such as mnemonics or hardware wallets, can be cumbersome. This difficulty in user onboarding has significantly hindered the adoption of blockchain-based applications.
We develop zkLogin, a novel technique that leverages identity tokens issued by popular platforms (any OpenID Connect enabled platform e.g., Google, Facebook, etc.) to authenticate transactions. At the heart of zkLogin lies a signature scheme allowing the signer to sign using their existing OpenID accounts and nothing else. This improves the user experience significantly as users do not need to remember a new secret and can reuse their existing accounts.
zkLogin provides strong security and privacy guarantees. Unlike prior works, zkLogin's security relies solely on the underlying platform's authentication mechanism without the need for any additional trusted parties (e.g., trusted hardware or oracles). As the name suggests, zkLogin leverages zero-knowledge proofs (ZKP) to ensure that the sensitive link between a user's off-chain and on-chain identities is hidden, even from the platform itself.
zkLogin enables a number of important applications outside blockchains. It allows billions of users to produce \textit{verifiable digital content leveraging their existing digital identities}, e.g., email address. For example, a journalist can use zkLogin to sign a news article with their email address, allowing verification of the article's authorship by any party.
We have implemented and deployed zkLogin on the Sui blockchain as an additional alternative to traditional digital signature-based addresses.
Submission history
From: Deepak Maram [view email][v1] Mon, 22 Jan 2024 07:23:58 UTC (5,297 KB)
[v2] Fri, 27 Sep 2024 22:37:36 UTC (184 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.