Computer Science > Robotics
[Submitted on 16 Jan 2024]
Title:Mechatronic Design, Experimental Setup and Control Architecture Design of a Novel 4 DoF Parallel Manipulator
View PDFAbstract:Although parallel manipulators (PMs) started with the introduction of architectures with 6 Degrees of Freedom (DoF), a vast number of applications require less than 6 DoF. Consequently, scholars have proposed architectures with 3 DoF and 4 DoF, but relatively few 4 DoF PMs have become prototypes, especially of the two rotation (2R) and two translation (2T) motion types. In this paper, we explain the mechatronics design, prototype and control architecture design of a 4 DoF PM with 2R2T motions. We chose to design a 4 DoF manipulator based on the motion needed to complete the tasks of lower limb rehabilitation.
To the author's best knowledge, PMs between 3 and 6 DoF for rehabilitation of lower limbs have not been proposed to date. The developed architecture enhances the three minimum DoF required by adding a 4 DoF which allows combinations of normal or tangential efforts in the joints, or torque acting on the knee. We put forward the inverse and forward displacement equations, describe the prototype, perform the experimental setup, and develop the hardware and control architecture. The tracking accuracy experiments from the proposed controller show that the manipulator can accomplish the required application.
Current browse context:
cs.RO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.