Computer Science > Computational Engineering, Finance, and Science
[Submitted on 11 Jan 2024]
Title:VW-PINNs: A volume weighting method for PDE residuals in physics-informed neural networks
View PDFAbstract:Physics-informed neural networks (PINNs) have shown remarkable prospects in the solving the forward and inverse problems involving partial differential equations (PDEs). The method embeds PDEs into the neural network by calculating PDE loss at a series of collocation points, providing advantages such as meshfree and more convenient adaptive sampling. However, when solving PDEs using nonuniform collocation points, PINNs still face challenge regarding inefficient convergence of PDE residuals or even failure. In this work, we first analyze the ill-conditioning of the PDE loss in PINNs under nonuniform collocation points. To address the issue, we define volume-weighted residual and propose volume-weighted physics-informed neural networks (VW-PINNs). Through weighting the PDE residuals by the volume that the collocation points occupy within the computational domain, we embed explicitly the spatial distribution characteristics of collocation points in the residual evaluation. The fast and sufficient convergence of the PDE residuals for the problems involving nonuniform collocation points is guaranteed. Considering the meshfree characteristics of VW-PINNs, we also develop a volume approximation algorithm based on kernel density estimation to calculate the volume of the collocation points. We verify the universality of VW-PINNs by solving the forward problems involving flow over a circular cylinder and flow over the NACA0012 airfoil under different inflow conditions, where conventional PINNs fail; By solving the Burgers' equation, we verify that VW-PINNs can enhance the efficiency of existing the adaptive sampling method in solving the forward problem by 3 times, and can reduce the relative error of conventional PINNs in solving the inverse problem by more than one order of magnitude.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.