Computer Science > Machine Learning
[Submitted on 30 Dec 2023]
Title:DiffHybrid-UQ: Uncertainty Quantification for Differentiable Hybrid Neural Modeling
View PDF HTML (experimental)Abstract:The hybrid neural differentiable models mark a significant advancement in the field of scientific machine learning. These models, integrating numerical representations of known physics into deep neural networks, offer enhanced predictive capabilities and show great potential for data-driven modeling of complex physical systems. However, a critical and yet unaddressed challenge lies in the quantification of inherent uncertainties stemming from multiple sources. Addressing this gap, we introduce a novel method, DiffHybrid-UQ, for effective and efficient uncertainty propagation and estimation in hybrid neural differentiable models, leveraging the strengths of deep ensemble Bayesian learning and nonlinear transformations. Specifically, our approach effectively discerns and quantifies both aleatoric uncertainties, arising from data noise, and epistemic uncertainties, resulting from model-form discrepancies and data sparsity. This is achieved within a Bayesian model averaging framework, where aleatoric uncertainties are modeled through hybrid neural models. The unscented transformation plays a pivotal role in enabling the flow of these uncertainties through the nonlinear functions within the hybrid model. In contrast, epistemic uncertainties are estimated using an ensemble of stochastic gradient descent (SGD) trajectories. This approach offers a practical approximation to the posterior distribution of both the network parameters and the physical parameters. Notably, the DiffHybrid-UQ framework is designed for simplicity in implementation and high scalability, making it suitable for parallel computing environments. The merits of the proposed method have been demonstrated through problems governed by both ordinary and partial differentiable equations.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.