Computer Science > Cryptography and Security
[Submitted on 19 Dec 2023 (v1), last revised 24 Jul 2024 (this version, v3)]
Title:LLMs Cannot Reliably Identify and Reason About Security Vulnerabilities (Yet?): A Comprehensive Evaluation, Framework, and Benchmarks
View PDF HTML (experimental)Abstract:Large Language Models (LLMs) have been suggested for use in automated vulnerability repair, but benchmarks showing they can consistently identify security-related bugs are lacking. We thus develop SecLLMHolmes, a fully automated evaluation framework that performs the most detailed investigation to date on whether LLMs can reliably identify and reason about security-related bugs. We construct a set of 228 code scenarios and analyze eight of the most capable LLMs across eight different investigative dimensions using our framework. Our evaluation shows LLMs provide non-deterministic responses, incorrect and unfaithful reasoning, and perform poorly in real-world scenarios. Most importantly, our findings reveal significant non-robustness in even the most advanced models like `PaLM2' and `GPT-4': by merely changing function or variable names, or by the addition of library functions in the source code, these models can yield incorrect answers in 26% and 17% of cases, respectively. These findings demonstrate that further LLM advances are needed before LLMs can be used as general purpose security assistants.
Submission history
From: Saad Ullah [view email][v1] Tue, 19 Dec 2023 20:19:43 UTC (1,194 KB)
[v2] Sat, 13 Apr 2024 20:55:53 UTC (1,200 KB)
[v3] Wed, 24 Jul 2024 07:49:14 UTC (1,085 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.