Computer Science > Machine Learning
[Submitted on 14 Dec 2023]
Title:Improve Robustness of Reinforcement Learning against Observation Perturbations via $l_\infty$ Lipschitz Policy Networks
View PDF HTML (experimental)Abstract:Deep Reinforcement Learning (DRL) has achieved remarkable advances in sequential decision tasks. However, recent works have revealed that DRL agents are susceptible to slight perturbations in observations. This vulnerability raises concerns regarding the effectiveness and robustness of deploying such agents in real-world applications. In this work, we propose a novel robust reinforcement learning method called SortRL, which improves the robustness of DRL policies against observation perturbations from the perspective of the network architecture. We employ a novel architecture for the policy network that incorporates global $l_\infty$ Lipschitz continuity and provide a convenient method to enhance policy robustness based on the output margin. Besides, a training framework is designed for SortRL, which solves given tasks while maintaining robustness against $l_\infty$ bounded perturbations on the observations. Several experiments are conducted to evaluate the effectiveness of our method, including classic control tasks and video games. The results demonstrate that SortRL achieves state-of-the-art robustness performance against different perturbation strength.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.