Quantitative Biology > Biomolecules
[Submitted on 13 Dec 2023 (v1), last revised 16 Dec 2023 (this version, v2)]
Title:Best practices for machine learning in antibody discovery and development
View PDFAbstract:Over the past 40 years, the discovery and development of therapeutic antibodies to treat disease has become common practice. However, as therapeutic antibody constructs are becoming more sophisticated (e.g., multi-specifics), conventional approaches to optimisation are increasingly inefficient. Machine learning (ML) promises to open up an in silico route to antibody discovery and help accelerate the development of drug products using a reduced number of experiments and hence cost. Over the past few years, we have observed rapid developments in the field of ML-guided antibody discovery and development (D&D). However, many of the results are difficult to compare or hard to assess for utility by other experts in the field due to the high diversity in the datasets and evaluation techniques and metrics that are across industry and academia. This limitation of the literature curtails the broad adoption of ML across the industry and slows down overall progress in the field, highlighting the need to develop standards and guidelines that may help improve the reproducibility of ML models across different research groups. To address these challenges, we set out in this perspective to critically review current practices, explain common pitfalls, and clearly define a set of method development and evaluation guidelines that can be applied to different types of ML-based techniques for therapeutic antibody D&D. Specifically, we address in an end-to-end analysis, challenges associated with all aspects of the ML process and recommend a set of best practices for each stage.
Submission history
From: Victor Greiff [view email][v1] Wed, 13 Dec 2023 19:13:11 UTC (2,583 KB)
[v2] Sat, 16 Dec 2023 21:54:59 UTC (2,588 KB)
Current browse context:
q-bio.BM
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.