Computer Science > Machine Learning
[Submitted on 6 Dec 2023 (v1), last revised 10 Nov 2024 (this version, v2)]
Title:Evaluation of human-model prediction difference on the Internet Scale of Data
View PDF HTML (experimental)Abstract:Evaluating models on datasets often fails to capture their behavior when faced with unexpected and diverse types of inputs. It would be beneficial if we could evaluate the difference between human annotation and model prediction for an internet number of inputs, or more generally, for an input space that enumeration is computationally impractical. Traditional model evaluation methods rely on precision and recall (PR) as metrics, which are typically estimated by comparing human annotations with model predictions on a specific dataset. This is feasible because enumerating thousands of test inputs is manageable. However, estimating PR across a large input space is challenging because enumeration becomes computationally infeasible. We propose OmniInput, a novel approach to evaluate and compare NNs by the PR of an input space. OmniInput is distinctive from previous works as its estimated PR reflects the estimation of the differences between human annotation and model prediction in the input space which is usually too huge to be enumerated. We empirically validate our method within an enumerable input space, and our experiments demonstrate that OmniInput can effectively estimate and compare precision and recall for (large) language models within a broad input space that is not enumerable.
Submission history
From: Weitang Liu [view email][v1] Wed, 6 Dec 2023 04:53:12 UTC (6,882 KB)
[v2] Sun, 10 Nov 2024 06:12:24 UTC (12,336 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.