Computer Science > Machine Learning
[Submitted on 27 Nov 2023]
Title:Physics-Informed Neural Network for Discovering Systems with Unmeasurable States with Application to Lithium-Ion Batteries
View PDFAbstract:Combining machine learning with physics is a trending approach for discovering unknown dynamics, and one of the most intensively studied frameworks is the physics-informed neural network (PINN). However, PINN often fails to optimize the network due to its difficulty in concurrently minimizing multiple losses originating from the system's governing equations. This problem can be more serious when the system's states are unmeasurable, like lithium-ion batteries (LiBs). In this work, we introduce a robust method for training PINN that uses fewer loss terms and thus constructs a less complex landscape for optimization. In particular, instead of having loss terms from each differential equation, this method embeds the dynamics into a loss function that quantifies the error between observed and predicted system outputs. This is accomplished by numerically integrating the predicted states from the neural network(NN) using known dynamics and transforming them to obtain a sequence of predicted outputs. Minimizing such a loss optimizes the NN to predict states consistent with observations given the physics. Further, the system's parameters can be added to the optimization targets. To demonstrate the ability of this method to perform various modeling and control tasks, we apply it to a battery model to concurrently estimate its states and parameters.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.